2011 Complete Guide to Spent Nuclear Fuel Pool Risks at Nuclear Power Plants: NRC Reports on Spent Fuel Rods, Zircaloy Fires, Mitigation Measures, Crisis at Japan's TEPCO Fukushima Power Plant

Nonfiction, Science & Nature, Science, Physics, General Physics, Social & Cultural Studies, Political Science
Cover of the book 2011 Complete Guide to Spent Nuclear Fuel Pool Risks at Nuclear Power Plants: NRC Reports on Spent Fuel Rods, Zircaloy Fires, Mitigation Measures, Crisis at Japan's TEPCO Fukushima Power Plant by Progressive Management, Progressive Management
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Progressive Management ISBN: 9781458182784
Publisher: Progressive Management Publication: March 23, 2011
Imprint: Smashwords Edition Language: English
Author: Progressive Management
ISBN: 9781458182784
Publisher: Progressive Management
Publication: March 23, 2011
Imprint: Smashwords Edition
Language: English

The crisis at the TEPCO Fukushima Daiichi Nuclear Power Station in Japan following the great earthquake and tsunami of March 11, 2011 has raised important issues about the safety of spent nuclear fuel rod storage, especially those located at the top of boiling water reactor (BWR) units. At press time, there is continuing concern about the status of the spent nuclear fuel pools located above the reactors in several units of the Fukushima Daiichi Power Station in Japan ravaged by the March 11, 2011 earthquake and tsunami. Heroic efforts are underway to spray the pools with water to prevent the emission of large amounts of radiation. This new compendium includes a brief overview of the handling and security of spent nuclear fuels and three major studies for the Nuclear Regulatory Commission (NRC) which deal with the hazards of reactor spent fuel pools. The first report, by the Sandia Laboratories, specifically addresses the type of situation faced by TEPCO at Fukushima with boiling water reactors (BWR). The second report, by the Brookhaven National Laboratory, characterizes the radiological risks posed by storage of spent reactor fuel at commercial reactors. Excerpts from a third report discuss possible mitigation options for pool accidents. Finally, we reproduce a report by the GAO about the safety of spent nuclear fuel.

A 1989 Brookhaven National Laboratory report dismissed suggestions for additional safety measures in a cost/benefit analysis. Measures which might be useful in a situation such as the Fukushima disaster, including inventory reduction, seismic-proof water systems, and covering the pool with solid materials after an accident, are discussed.

Allen Benjamin and others, writing in the Sandia report, state: "Analysis of spent fuel heatup following a hypothetical accident involving drainage of the storage pool is presented. Computations based upon a new computer code called SFUEL have been performed to assess the effect of decay time, fuel element design, storage rack design, packing density, room ventilation, drainage level, and other variables on the heatup characteristics of the spent fuel and to predict the conditions under which clad failure will occur. It has been found that the likelihood of clad failure due to rupture or melting following a complete drainage is extremely dependent on the storage configuration and the spent fuel decay period, and that the minimum prerequisite decay time to preclude clad failure may vary from less than 10 days for some storage configurations to several years for others."

The report discusses emergency aspects of pool water loss relevant to the Japanese situation. "An alternative way to maintain coolability, at least on a temporary basis, would be to provide an emergency water spray of sufficient intensity to remove the decay heat by its latent heat of vaporization. The water supply could be available from onsite hydrants, from onsite storage tanks, from remote portable storage tanks, or, preferably, from a combination of onsite and remote sources in order to reduce the risk of unavailability. Facility personnel would presumably be available to set up fire hoses and initiate the spray in the event of a complete power failure, and the spray would be continued until the source of the leak could be repaired."

The abstract for the BNL report reads: "This investigation provides an assessment of the likelihood and consequences of a severe accident in a spent fuel storage pool - the complete draining of the pool. Potential mechanisms and conditions for failure of the spent fuel, and the subsequent release of the fission products, are identified. Two older PWR and BWR spent fuel storage pool designs are considered based on a preliminary screening study which tried to identify vulnerabilities. Internal and external events and accidents are assessed.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The crisis at the TEPCO Fukushima Daiichi Nuclear Power Station in Japan following the great earthquake and tsunami of March 11, 2011 has raised important issues about the safety of spent nuclear fuel rod storage, especially those located at the top of boiling water reactor (BWR) units. At press time, there is continuing concern about the status of the spent nuclear fuel pools located above the reactors in several units of the Fukushima Daiichi Power Station in Japan ravaged by the March 11, 2011 earthquake and tsunami. Heroic efforts are underway to spray the pools with water to prevent the emission of large amounts of radiation. This new compendium includes a brief overview of the handling and security of spent nuclear fuels and three major studies for the Nuclear Regulatory Commission (NRC) which deal with the hazards of reactor spent fuel pools. The first report, by the Sandia Laboratories, specifically addresses the type of situation faced by TEPCO at Fukushima with boiling water reactors (BWR). The second report, by the Brookhaven National Laboratory, characterizes the radiological risks posed by storage of spent reactor fuel at commercial reactors. Excerpts from a third report discuss possible mitigation options for pool accidents. Finally, we reproduce a report by the GAO about the safety of spent nuclear fuel.

A 1989 Brookhaven National Laboratory report dismissed suggestions for additional safety measures in a cost/benefit analysis. Measures which might be useful in a situation such as the Fukushima disaster, including inventory reduction, seismic-proof water systems, and covering the pool with solid materials after an accident, are discussed.

Allen Benjamin and others, writing in the Sandia report, state: "Analysis of spent fuel heatup following a hypothetical accident involving drainage of the storage pool is presented. Computations based upon a new computer code called SFUEL have been performed to assess the effect of decay time, fuel element design, storage rack design, packing density, room ventilation, drainage level, and other variables on the heatup characteristics of the spent fuel and to predict the conditions under which clad failure will occur. It has been found that the likelihood of clad failure due to rupture or melting following a complete drainage is extremely dependent on the storage configuration and the spent fuel decay period, and that the minimum prerequisite decay time to preclude clad failure may vary from less than 10 days for some storage configurations to several years for others."

The report discusses emergency aspects of pool water loss relevant to the Japanese situation. "An alternative way to maintain coolability, at least on a temporary basis, would be to provide an emergency water spray of sufficient intensity to remove the decay heat by its latent heat of vaporization. The water supply could be available from onsite hydrants, from onsite storage tanks, from remote portable storage tanks, or, preferably, from a combination of onsite and remote sources in order to reduce the risk of unavailability. Facility personnel would presumably be available to set up fire hoses and initiate the spray in the event of a complete power failure, and the spray would be continued until the source of the leak could be repaired."

The abstract for the BNL report reads: "This investigation provides an assessment of the likelihood and consequences of a severe accident in a spent fuel storage pool - the complete draining of the pool. Potential mechanisms and conditions for failure of the spent fuel, and the subsequent release of the fission products, are identified. Two older PWR and BWR spent fuel storage pool designs are considered based on a preliminary screening study which tried to identify vulnerabilities. Internal and external events and accidents are assessed.

More books from Progressive Management

Cover of the book Global Mobility: Anywhere, Anytime, Any Threat? Countering the MANPADS Challenge - Man-Portable Air Defense Systems Missile, Airfields, Countermeasures, Seekers, Warhead, MEDUSA, Lasers by Progressive Management
Cover of the book 21st Century FEMA Study Course: Effective Communication (IS-242.a) - Hearing versus Listening, Media Interviews, Templates for Written Communications, Humor, Nonverbal Cues and Clusters by Progressive Management
Cover of the book Can Russia Reform? Economic, Political and Military Perspectives: The Russian Economy and Military, the Rule of Vladimir Putin and Dmitry Medvedev by Progressive Management
Cover of the book Bombs Over Bosnia: The Role of Airpower in Bosnia-Herzegovina - NATO Operation Deny Flight, Serbs and the Death of Yugoslavia, Deterrent Use of Airpower, Deliberate Force, Dayton Peace Accord by Progressive Management
Cover of the book 21st Century Peacekeeping and Stability Operations Institute (PKSOI) Papers - Harnessing Post-Conflict Transitions: A Conceptual Primer by Progressive Management
Cover of the book Unmanned Systems Integrated Roadmap FY2013-2038 - Unmanned Aircraft Systems (UAS), Drones, Unmanned Maritime Systems, Technologies, Logistics, Sustainment, Training, International, Foreign Sales by Progressive Management
Cover of the book Beyond Horizons: A Half Century of Air Force Space Leadership, Military Space Programs, Sputnik through the Age of Apollo and the Gulf War by Progressive Management
Cover of the book When You Get a Job to Do, Do It: The Airpower Leadership of Lt. General William H. Tunner - The Underappreciated Contributions to Airlift, World War II and Cold War, Hump and Berlin Airlift Operations by Progressive Management
Cover of the book U.S. Marines In Iraq, 2003: Combat Service Support During Operation Iraqi Freedom - U.S. Marines in the Global War on Terrorism - Taking Baghdad and Tikrit, Special Purpose MAGTF by Progressive Management
Cover of the book The Soldier's Blue Book: Guide for Initial Entry Training Soldiers - Army as a Profession, BCT, OSUT, AIT, Appearance and Uniforms, Health, Discipline, First Duty Station, Physical Readiness, Army FM1 by Progressive Management
Cover of the book The War Against Trucks: Aerial Interdiction in Southern Laos, 1968-1972 - Vietnam War Era, Jason Summer Study, Commando Hunt Campaigns, Electronic Surveillance Network by Progressive Management
Cover of the book Challenges in the Multipolar Space-Power Environment: Military Space Strategic Implications, Modeling the Space-Power Continuum, China, India, Europe, National Security Satellite Efforts by Progressive Management
Cover of the book Effects of UAVs on Interstate Relationships: A Case Study of U.S. Relations With Pakistan and Yemen - UAS, Drones, al-Qaeda, AQAP, Saudi Arabia, Arab Spring, Anwar al-Awlaki, Collateral Damage by Progressive Management
Cover of the book 21st Century Peacekeeping and Stability Operations Institute (PKSOI) Papers - Known Unknowns: Unconventional "Strategic Shocks" in Defense Strategy Development by Progressive Management
Cover of the book No Sense in Dwelling on the Past? The Fate of the U.S. Air Force's German Air Force Monograph Project, 1952-69, World War II von Rohden and Karlsruhe Projects, Bundesluftwaffe, Effects on NATO by Progressive Management
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy