2014 International Workshop on Research and Operational Considerations for Artificial Gravity Countermeasures: Mars Missions, Astronaut Performance, Long Duration Space Flight, Centrifugal Force

Nonfiction, Science & Nature, Technology, Aeronautics & Astronautics, Science, Physics, Astrophysics & Space Science
Cover of the book 2014 International Workshop on Research and Operational Considerations for Artificial Gravity Countermeasures: Mars Missions, Astronaut Performance, Long Duration Space Flight, Centrifugal Force by Progressive Management, Progressive Management
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Progressive Management ISBN: 9781311416902
Publisher: Progressive Management Publication: April 30, 2015
Imprint: Smashwords Edition Language: English
Author: Progressive Management
ISBN: 9781311416902
Publisher: Progressive Management
Publication: April 30, 2015
Imprint: Smashwords Edition
Language: English

Professionally converted for accurate flowing-text e-book format reproduction, this NASA document outlines the work of the 2014 International Workshop on Research and Operational Considerations for Artificial Gravity (AG) Countermeasures brought together almost 100 scientists from the United States and abroad who participated in an update of the state of the art of what we know about AG today.

As space agencies plan the next generation of human space exploration missions to destinations beyond the Earth-Moon system, it is incumbent on mission designers to review the technologies and habitats necessary to maintain optimal health, safety, and performance of crewmembers on those missions. Emphasis was placed on integrating engineering aspects with physiological health requirements. Furthermore, it was a goal of the workshop to include presentations from NASA's international partners to exploit available worldwide resources, thereby lowering costs and gaining the best knowledge. The main conclusion from the workshop is that AG during long-duration space missions is feasible from an engineering perspective, and that three types of scenarios should be considered: centrifugation inside a space vehicle; spinning part of a vehicle; or spinning the whole vehicle. Research should be initiated as soon as possible to establish the life science AG requirements. In addition, the extent to which current countermeasures need to be combined with AG must be determined.

Topics covered: artificial gravity; long duration space flight; centrifugal force; countermeasures; gravitational force; physiological effects; physiological factors; astronaut performance.

Artificial gravity (AG) has the unique feature—in contrast to the traditional countermeasures—of protecting all physiological systems in all individuals against the effects of weightlessness, because throughout evolution all creatures on the surface of the Earth have adapted to the same 1-G level. Because it has become of concern that astronauts might experience increased intracranial pressures in space as a result of the weightlessness-induced fluid shifts, the use of AG could provide the best solution for human health protection during long-duration deep space missions. If so, the most-likely future AG scenarios in space will probably constitute 1) intermittent intravehicular, 2) intermittent part-of-vehicle, or 3) continuous whole-vehicle centrifugation. Technical feasibility studies have indicated that continuous, whole-vehicle centrifugation is possible during a transit to Mars, but physiological requirements such as G-level and rotation rate have not yet been defined. This information is needed before AG-configuration concepts can be determined. Results of previous ground studies have shown some protective effects of intermittent short-radius centrifugation on muscle, bone, the central nervous system, heart, and circulation. More research, however, is needed to better understand the relationship between physiological responses and G-levels between zero and one. AG rodent research on the International Space Station (ISS) can be a starting point in 2015 with NASA and Japan Aerospace Exploration Agency (JAXA) rodent habitats. Several ground-based short-radius human centrifuges are available worldwide for ground- based intermittent AG research, whereas only a few long-radius centrifuges exist for long-duration exposures (United States and Russia). Thus, for definition of the physiological requirements to the engineering community, NASA should initiate an AG research program encompassing animal investigations on the ISS and short- and long-radius centrifugations in humans on the ground to 1) identify the specific gaps associated with possible AG profiles, 2) perform trade-off feasibility analyses between potential AG profiles and non-AG solutions, and 3) initiate international collaboration for the most efficient and strategic use of available resources.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Professionally converted for accurate flowing-text e-book format reproduction, this NASA document outlines the work of the 2014 International Workshop on Research and Operational Considerations for Artificial Gravity (AG) Countermeasures brought together almost 100 scientists from the United States and abroad who participated in an update of the state of the art of what we know about AG today.

As space agencies plan the next generation of human space exploration missions to destinations beyond the Earth-Moon system, it is incumbent on mission designers to review the technologies and habitats necessary to maintain optimal health, safety, and performance of crewmembers on those missions. Emphasis was placed on integrating engineering aspects with physiological health requirements. Furthermore, it was a goal of the workshop to include presentations from NASA's international partners to exploit available worldwide resources, thereby lowering costs and gaining the best knowledge. The main conclusion from the workshop is that AG during long-duration space missions is feasible from an engineering perspective, and that three types of scenarios should be considered: centrifugation inside a space vehicle; spinning part of a vehicle; or spinning the whole vehicle. Research should be initiated as soon as possible to establish the life science AG requirements. In addition, the extent to which current countermeasures need to be combined with AG must be determined.

Topics covered: artificial gravity; long duration space flight; centrifugal force; countermeasures; gravitational force; physiological effects; physiological factors; astronaut performance.

Artificial gravity (AG) has the unique feature—in contrast to the traditional countermeasures—of protecting all physiological systems in all individuals against the effects of weightlessness, because throughout evolution all creatures on the surface of the Earth have adapted to the same 1-G level. Because it has become of concern that astronauts might experience increased intracranial pressures in space as a result of the weightlessness-induced fluid shifts, the use of AG could provide the best solution for human health protection during long-duration deep space missions. If so, the most-likely future AG scenarios in space will probably constitute 1) intermittent intravehicular, 2) intermittent part-of-vehicle, or 3) continuous whole-vehicle centrifugation. Technical feasibility studies have indicated that continuous, whole-vehicle centrifugation is possible during a transit to Mars, but physiological requirements such as G-level and rotation rate have not yet been defined. This information is needed before AG-configuration concepts can be determined. Results of previous ground studies have shown some protective effects of intermittent short-radius centrifugation on muscle, bone, the central nervous system, heart, and circulation. More research, however, is needed to better understand the relationship between physiological responses and G-levels between zero and one. AG rodent research on the International Space Station (ISS) can be a starting point in 2015 with NASA and Japan Aerospace Exploration Agency (JAXA) rodent habitats. Several ground-based short-radius human centrifuges are available worldwide for ground- based intermittent AG research, whereas only a few long-radius centrifuges exist for long-duration exposures (United States and Russia). Thus, for definition of the physiological requirements to the engineering community, NASA should initiate an AG research program encompassing animal investigations on the ISS and short- and long-radius centrifugations in humans on the ground to 1) identify the specific gaps associated with possible AG profiles, 2) perform trade-off feasibility analyses between potential AG profiles and non-AG solutions, and 3) initiate international collaboration for the most efficient and strategic use of available resources.

More books from Progressive Management

Cover of the book Competing Claims Among Argentina, Chile, and Great Britain in the Antarctic: Economic and Geopolitical Undercurrents - Treaty, Geopolitical Perspectives, U.S. Interests, Falklands Malvinas Conflict by Progressive Management
Cover of the book Vantage Points: Perspectives on Airpower and the Profession of Arms - Timely and Timeless Thoughts on Dozens of Topics from Theory of War and Patriotism to Lessons Learned, Leadership, Technology by Progressive Management
Cover of the book Measuring the Immeasurable: An Approach to Assessing the Effectiveness of Engineering Civic Assistance Projects Towards Achieving National Security Objectives - Humanitarian Efforts by World Vision by Progressive Management
Cover of the book National Security Space Strategy, Unclassified Summary, January 2011, plus Toward a Theory of Spacepower: Selected Essays by Progressive Management
Cover of the book Airpower Against an Army: Challenge and Response in Central Command Air Forces (CENTAF) Duel with Republican Guard in the Persian Gulf War, Desert Storm, Unique Look at How the Guard Was Annihilated by Progressive Management
Cover of the book Here to Help: Third Party Deterrence Against Insurgent Groups - State Centrism, Nuclear Prominence, and Congruent Relationships, Denial, Delegitimization, Case Study of Boko Haram, Nigeria and America by Progressive Management
Cover of the book United States Department of Justice Civil Rights Division Investigation of the Ferguson Police Department: Practices Violate the Law and Undermine Community Trust, Especially Among African Americans by Progressive Management
Cover of the book Army Cyber Mission Force: Ambitions and Realities: Recruiting, Retaining, and Organizing Personnel, Getting the Best and the Brightest, Need to Depart from Standard Army Personnel Practices by Progressive Management
Cover of the book Nanoscience and Nanotechnology Research and Safety Issues: Government Oversight Hearings and Reports, NNI, Priorities for the Future by Progressive Management
Cover of the book United States Air Force (USAF) AU-2 Guidelines for Command - A Handbook on the Leadership of Airmen for Air Force Squadron Commanders, Expeditionary Forces, Discipline by Progressive Management
Cover of the book 2016 National Network of Fusion Centers: Final Report July 2017 - Fusion Center Profiles and Full List, Partner Agency Data, Staff and Analysts, Governance Structure and Membership, Operational Costs by Progressive Management
Cover of the book Mosul Dam in Iraq: The Most Dangerous Dam in the World - Government Reports and Background, Catastrophic Threat from ISIS/ISIL Islamic Terrorists, Technical Data, American Funded Work by Progressive Management
Cover of the book Effective Operational Deception: Learning the Lessons of Midway and Desert Storm - World War II and the Persian Gulf War, Japanese Deception Plan Failed to Incorporate Economy of Force Principle by Progressive Management
Cover of the book Iran's Post-9/11 Grand Bargain: Missed Opportunity for Strategic Rapprochement Between Iran and the United States - History from the 1953 Coup, Hostage Crisis, Iran-Iraq War, Khomeini to Khamenei by Progressive Management
Cover of the book Orienting Our Sights on the Future: Opportunities and Challenges of the Arab Revolts by Progressive Management
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy