Advanced Materials for Membrane Fabrication and Modification

Nonfiction, Science & Nature, Science, Chemistry, Technical & Industrial, Technology, Engineering, Environmental, Material Science
Cover of the book Advanced Materials for Membrane Fabrication and Modification by , CRC Press
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9781351730884
Publisher: CRC Press Publication: August 30, 2018
Imprint: CRC Press Language: English
Author:
ISBN: 9781351730884
Publisher: CRC Press
Publication: August 30, 2018
Imprint: CRC Press
Language: English

Membranes are an energy efficient separation technology that are now the basis for many water treatment and food processing applications. However, there is the potential to improve the operating performance of these separations and to extend the application of membranes to energy production, gas separations, organic solvent-based separations, and biomedical applications through novel membrane materials. This book contains 20 chapters written by leading academic researchers on membrane fabrication and modification techniques and provides a comprehensive overview on the recent developments of membrane technology.

Membranes can be manufactured from a range of materials including polymeric compounds, and ceramic materials, and both these materials are considered in the book. There are 5 chapters on water and wastewater membranes that cover the fabrication of thin film (TFC) composite membranes for nanofiltration(NF)/reverse osmosis (RO)/forward osmosis (FO) applications, stimuli responsive membranes, electrospun membranes, porous ceramic membranes, and polymeric ultrafiltration (UF) manufacture and modification.

There are another 6 chapters on gas separation that consider carbon membranes, zeolite membranes, silica template and metal oxide silica membranes, TFC membranes, silica membranes, and metal organic framework (MOF) membranes. Zeolite membranes are also considered for organic solvent applications, as are solvent-resistant membranes manufactured by phase inversion, ceramic-supported composite membranes, and ceramic NF membranes. The emerging areas of membranes for energy and biomedical applications have 3 and 2 chapters, respectively. Energy applications consider ion exchange membranes for use in fuel cells, membranes for electrodialysis, and membranes for use in microbial fuel cells. For biomedical applications the chapters focus on hemodialysis membranes and redox responsive membranes.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Membranes are an energy efficient separation technology that are now the basis for many water treatment and food processing applications. However, there is the potential to improve the operating performance of these separations and to extend the application of membranes to energy production, gas separations, organic solvent-based separations, and biomedical applications through novel membrane materials. This book contains 20 chapters written by leading academic researchers on membrane fabrication and modification techniques and provides a comprehensive overview on the recent developments of membrane technology.

Membranes can be manufactured from a range of materials including polymeric compounds, and ceramic materials, and both these materials are considered in the book. There are 5 chapters on water and wastewater membranes that cover the fabrication of thin film (TFC) composite membranes for nanofiltration(NF)/reverse osmosis (RO)/forward osmosis (FO) applications, stimuli responsive membranes, electrospun membranes, porous ceramic membranes, and polymeric ultrafiltration (UF) manufacture and modification.

There are another 6 chapters on gas separation that consider carbon membranes, zeolite membranes, silica template and metal oxide silica membranes, TFC membranes, silica membranes, and metal organic framework (MOF) membranes. Zeolite membranes are also considered for organic solvent applications, as are solvent-resistant membranes manufactured by phase inversion, ceramic-supported composite membranes, and ceramic NF membranes. The emerging areas of membranes for energy and biomedical applications have 3 and 2 chapters, respectively. Energy applications consider ion exchange membranes for use in fuel cells, membranes for electrodialysis, and membranes for use in microbial fuel cells. For biomedical applications the chapters focus on hemodialysis membranes and redox responsive membranes.

More books from CRC Press

Cover of the book Methyl Chloroform and Trichloroethylene in the Environment by
Cover of the book Quantum Kinematics And Dynamic by
Cover of the book Environmental Management Revision Guide by
Cover of the book Get Qualified: Inspection and Testing by
Cover of the book Circuits and Systems for Security and Privacy by
Cover of the book Tensor Methods in Statistics by
Cover of the book Structural Building Design by
Cover of the book Physical Hazards of the Workplace by
Cover of the book Data Analytics for Smart Cities by
Cover of the book Linear Electric Machines, Drives, and MAGLEVs Handbook by
Cover of the book Human Performance in General Aviation by
Cover of the book Lightweight and Sustainable Materials for Automotive Applications by
Cover of the book The Medical Student's Survival Guide by
Cover of the book Molecular Biology of the Hepatitis B Virus by
Cover of the book The Mechanics of Soils and Foundations by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy