Author: | Yuli V. Nazarov, Jeroen Danon | ISBN: | 9781139609722 |
Publisher: | Cambridge University Press | Publication: | January 3, 2013 |
Imprint: | Cambridge University Press | Language: | English |
Author: | Yuli V. Nazarov, Jeroen Danon |
ISBN: | 9781139609722 |
Publisher: | Cambridge University Press |
Publication: | January 3, 2013 |
Imprint: | Cambridge University Press |
Language: | English |
An accessible introduction to advanced quantum theory, this graduate-level textbook focuses on its practical applications rather than mathematical technicalities. It treats real-life examples, from topics ranging from quantum transport to nanotechnology, to equip students with a toolbox of theoretical techniques. Beginning with second quantization, the authors illustrate its use with different condensed matter physics examples. They then explain how to quantize classical fields, with a focus on the electromagnetic field, taking students from Maxwell's equations to photons, coherent states and absorption and emission of photons. Following this is a unique master-level presentation on dissipative quantum mechanics, before the textbook concludes with a short introduction to relativistic quantum mechanics, covering the Dirac equation and a relativistic second quantization formalism. The textbook includes 70 end-of-chapter problems. Solutions to some problems are given at the end of the chapter and full solutions to all problems are available for instructors at www.cambridge.org/9780521761505.
An accessible introduction to advanced quantum theory, this graduate-level textbook focuses on its practical applications rather than mathematical technicalities. It treats real-life examples, from topics ranging from quantum transport to nanotechnology, to equip students with a toolbox of theoretical techniques. Beginning with second quantization, the authors illustrate its use with different condensed matter physics examples. They then explain how to quantize classical fields, with a focus on the electromagnetic field, taking students from Maxwell's equations to photons, coherent states and absorption and emission of photons. Following this is a unique master-level presentation on dissipative quantum mechanics, before the textbook concludes with a short introduction to relativistic quantum mechanics, covering the Dirac equation and a relativistic second quantization formalism. The textbook includes 70 end-of-chapter problems. Solutions to some problems are given at the end of the chapter and full solutions to all problems are available for instructors at www.cambridge.org/9780521761505.