Advances in the Understanding of Biological Sciences Using Next Generation Sequencing (NGS) Approaches

Nonfiction, Science & Nature, Science, Biological Sciences, Botany
Cover of the book Advances in the Understanding of Biological Sciences Using Next Generation Sequencing (NGS) Approaches by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319171579
Publisher: Springer International Publishing Publication: July 16, 2015
Imprint: Springer Language: English
Author:
ISBN: 9783319171579
Publisher: Springer International Publishing
Publication: July 16, 2015
Imprint: Springer
Language: English

Provides a global view of the recent advances in the biological sciences and the adaption of the pathogen to the host plants revealed using NGS. Molecular Omic’s is now a major driving force to learn the adaption genetics and a great challenge to the scientific community, which can be resolved through the application of the NGS technologies. The availability of complete genome sequences, the respective model species for dicot and monocot plant groups, presents a global opportunity to delineate the identification, function and the expression of the genes, to develop new tools for the identification of the new genes and pathway identification. Genome-wide research tools, resources and approaches such as data mining for structural similarities, gene expression profiling at the DNA and RNA level with rapid increase in available genome sequencing efforts, expressed sequence tags (ESTs), RNA-seq, gene expression profiling, induced deletion mutants and insertional mutants, and gene expression knock-down (gene silencing) studies with RNAi and microRNAs have become integral parts of plant molecular omic’s. Molecular diversity and mutational approaches present the first line of approach to unravel the genetic and molecular basis for several traits, QTL related to disease resistance, which includes host approaches to combat the pathogens and to understand the adaptation of the pathogen to the plant host. Using NGS technologies, understanding of adaptation genetics towards stress tolerance has been correlated to the epigenetics. Naturally occurring allelic variations, genome shuffling and variations induced by chemical or radiation mutagenesis are also being used in functional genomics to elucidate the pathway for the pathogen and stress tolerance and is widely illustrated in demonstrating the identification of the genes responsible for tolerance in plants, bacterial and fungal species.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Provides a global view of the recent advances in the biological sciences and the adaption of the pathogen to the host plants revealed using NGS. Molecular Omic’s is now a major driving force to learn the adaption genetics and a great challenge to the scientific community, which can be resolved through the application of the NGS technologies. The availability of complete genome sequences, the respective model species for dicot and monocot plant groups, presents a global opportunity to delineate the identification, function and the expression of the genes, to develop new tools for the identification of the new genes and pathway identification. Genome-wide research tools, resources and approaches such as data mining for structural similarities, gene expression profiling at the DNA and RNA level with rapid increase in available genome sequencing efforts, expressed sequence tags (ESTs), RNA-seq, gene expression profiling, induced deletion mutants and insertional mutants, and gene expression knock-down (gene silencing) studies with RNAi and microRNAs have become integral parts of plant molecular omic’s. Molecular diversity and mutational approaches present the first line of approach to unravel the genetic and molecular basis for several traits, QTL related to disease resistance, which includes host approaches to combat the pathogens and to understand the adaptation of the pathogen to the plant host. Using NGS technologies, understanding of adaptation genetics towards stress tolerance has been correlated to the epigenetics. Naturally occurring allelic variations, genome shuffling and variations induced by chemical or radiation mutagenesis are also being used in functional genomics to elucidate the pathway for the pathogen and stress tolerance and is widely illustrated in demonstrating the identification of the genes responsible for tolerance in plants, bacterial and fungal species.

More books from Springer International Publishing

Cover of the book Laborpraxis Band 4: Analytische Methoden by
Cover of the book Handbook of Media Branding by
Cover of the book Italy’s Top Products in World Trade by
Cover of the book British Romantic Literature and the Emerging Modern Greek Nation by
Cover of the book Your Guide to the 2017 Total Solar Eclipse by
Cover of the book Acetylene and Its Polymers by
Cover of the book Aesthetics of Interdisciplinarity: Art and Mathematics by
Cover of the book Resilience-Oriented Urban Planning by
Cover of the book Stochastic Models, Statistics and Their Applications by
Cover of the book Pheochromocytomas, Paragangliomas and Disorders of the Sympathoadrenal System by
Cover of the book Development Aid—Populism and the End of the Neoliberal Agenda by
Cover of the book Phenomenology of Space and Time by
Cover of the book The UK’s Relationship with Europe by
Cover of the book Security Protocols XXIII by
Cover of the book Geology and Paleontology of the Quaternary of Uruguay by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy