Algorithmic Advances in Riemannian Geometry and Applications

For Machine Learning, Computer Vision, Statistics, and Optimization

Nonfiction, Computers, Advanced Computing, Engineering, Computer Vision, Artificial Intelligence, General Computing
Cover of the book Algorithmic Advances in Riemannian Geometry and Applications by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319450261
Publisher: Springer International Publishing Publication: October 5, 2016
Imprint: Springer Language: English
Author:
ISBN: 9783319450261
Publisher: Springer International Publishing
Publication: October 5, 2016
Imprint: Springer
Language: English

This book presents a selection of the most recent algorithmic advances in Riemannian geometry in the context of machine learning, statistics, optimization, computer vision, and related fields. The unifying theme of the different chapters in the book is the exploitation of the geometry of data using the mathematical machinery of Riemannian geometry. As demonstrated by all the chapters in the book, when the data is intrinsically non-Euclidean, the utilization of this geometrical information can lead to better algorithms that can capture more accurately the structures inherent in the data, leading ultimately to better empirical performance. This book is not intended to be an encyclopedic compilation of the applications of Riemannian geometry. Instead, it focuses on several important research directions that are currently actively pursued by researchers in the field. These include statistical modeling and analysis on manifolds,optimization on manifolds, Riemannian manifolds and kernel methods, and dictionary learning and sparse coding on manifolds. Examples of applications include novel algorithms for Monte Carlo sampling and Gaussian Mixture Model fitting,  3D brain image analysis,image classification, action recognition, and motion tracking.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book presents a selection of the most recent algorithmic advances in Riemannian geometry in the context of machine learning, statistics, optimization, computer vision, and related fields. The unifying theme of the different chapters in the book is the exploitation of the geometry of data using the mathematical machinery of Riemannian geometry. As demonstrated by all the chapters in the book, when the data is intrinsically non-Euclidean, the utilization of this geometrical information can lead to better algorithms that can capture more accurately the structures inherent in the data, leading ultimately to better empirical performance. This book is not intended to be an encyclopedic compilation of the applications of Riemannian geometry. Instead, it focuses on several important research directions that are currently actively pursued by researchers in the field. These include statistical modeling and analysis on manifolds,optimization on manifolds, Riemannian manifolds and kernel methods, and dictionary learning and sparse coding on manifolds. Examples of applications include novel algorithms for Monte Carlo sampling and Gaussian Mixture Model fitting,  3D brain image analysis,image classification, action recognition, and motion tracking.

More books from Springer International Publishing

Cover of the book Provenance and Annotation of Data and Processes by
Cover of the book Real-time Strategy and Business Intelligence by
Cover of the book Sociality: The Behaviour of Group-Living Animals by
Cover of the book Becoming a Project Leader by
Cover of the book Uncertainty and Imprecision in Decision Making and Decision Support: Cross-Fertilization, New Models and Applications by
Cover of the book Web Information Systems Engineering – WISE 2018 by
Cover of the book Towards the Pragmatic Core of English for European Communication by
Cover of the book Sport Entrepreneurship by
Cover of the book Advanced Data Mining and Applications by
Cover of the book Corpus Linguistics and Statistics with R by
Cover of the book The Automotive Transmission Book by
Cover of the book Algorithmic Aspects of Cloud Computing by
Cover of the book Energy Efficient Smart Phones for 5G Networks by
Cover of the book Drought Stress Tolerance in Plants, Vol 2 by
Cover of the book Mixing and Dispersion in Flows Dominated by Rotation and Buoyancy by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy