Anisotropic Nanomaterials

Preparation, Properties, and Applications

Nonfiction, Science & Nature, Science, Other Sciences, Nanostructures, Technology, Nanotechnology
Cover of the book Anisotropic Nanomaterials by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319182933
Publisher: Springer International Publishing Publication: June 9, 2015
Imprint: Springer Language: English
Author:
ISBN: 9783319182933
Publisher: Springer International Publishing
Publication: June 9, 2015
Imprint: Springer
Language: English

In this book anisotropic one-dimensional and two-dimensional nanoscale building blocks and their assembly into fascinating and qualitatively new functional structures embracing both hard and soft components are explained. Contributions from leading experts regarding important aspects like synthesis, assembly, properties and applications of the above materials are compiled into a reference book. The anisotropy, i.e. the direction-dependent physical properties, of materials is fascinating and elegant and has sparked the quest for anisotropic materials with useful properties. With such a curiosity, material scientists have ventured into the realm of nanometer length scale and have explored the anisotropic nanoscale building blocks such as metallic and nonmetallic particles as well as organic molecular aggregates. It turns out that the anisotropic nanoscale building blocks, in addition to direction-dependent properties, exhibit dimension and morphology dependence of physical properties. Moreover, ordered arrays of anisotropic nanoscale building blocks furnish novel properties into the resulting system which would be entirely different from the properties of individual ones. Undoubtedly, these promising properties have qualified them as enabling building blocks of 21st century materials science, nanoscience and nanotechnology. Readers will find this book professionally valuable and intellectually stimulating in the rapidly emerging area of anisotropic nanomaterials.

Quan Li, Ph.D., is Director of the Organic Synthesis and Advanced Materials Laboratory at the Liquid Crystal Institute of Kent State University, where he is also Adjunct Professor in the Chemical Physics Interdisciplinary Program. He has directed research
projects funded by US Air Force Research Laboratory (AFRL), US Air Force Office of Scientific Research (AFSOR), US Army Research Office (ARO), US Department of Defense Multidisciplinary University Research Initiative (DoD MURI), US National Science Foundation (NSF), US Department of Energy (DOE), US National Aeronautics and Space Administration (NASA), Ohio Third Frontier, and Samsung Electronics, among others.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

In this book anisotropic one-dimensional and two-dimensional nanoscale building blocks and their assembly into fascinating and qualitatively new functional structures embracing both hard and soft components are explained. Contributions from leading experts regarding important aspects like synthesis, assembly, properties and applications of the above materials are compiled into a reference book. The anisotropy, i.e. the direction-dependent physical properties, of materials is fascinating and elegant and has sparked the quest for anisotropic materials with useful properties. With such a curiosity, material scientists have ventured into the realm of nanometer length scale and have explored the anisotropic nanoscale building blocks such as metallic and nonmetallic particles as well as organic molecular aggregates. It turns out that the anisotropic nanoscale building blocks, in addition to direction-dependent properties, exhibit dimension and morphology dependence of physical properties. Moreover, ordered arrays of anisotropic nanoscale building blocks furnish novel properties into the resulting system which would be entirely different from the properties of individual ones. Undoubtedly, these promising properties have qualified them as enabling building blocks of 21st century materials science, nanoscience and nanotechnology. Readers will find this book professionally valuable and intellectually stimulating in the rapidly emerging area of anisotropic nanomaterials.

Quan Li, Ph.D., is Director of the Organic Synthesis and Advanced Materials Laboratory at the Liquid Crystal Institute of Kent State University, where he is also Adjunct Professor in the Chemical Physics Interdisciplinary Program. He has directed research
projects funded by US Air Force Research Laboratory (AFRL), US Air Force Office of Scientific Research (AFSOR), US Army Research Office (ARO), US Department of Defense Multidisciplinary University Research Initiative (DoD MURI), US National Science Foundation (NSF), US Department of Energy (DOE), US National Aeronautics and Space Administration (NASA), Ohio Third Frontier, and Samsung Electronics, among others.

More books from Springer International Publishing

Cover of the book Variational Inequalities and Frictional Contact Problems by
Cover of the book Neutron Scattering and Other Nuclear Techniques for Hydrogen in Materials by
Cover of the book Shakespeare, Catholicism, and the Middle Ages by
Cover of the book Nonlinear Stochastic Systems with Network-Induced Phenomena by
Cover of the book Atmospheric and Space Sciences: Neutral Atmospheres by
Cover of the book Membrane Computing by
Cover of the book Cosmopolitanism, Markets, and Consumption by
Cover of the book Nonlinear Waves and Pattern Dynamics by
Cover of the book Integration as Solution for Advanced Smart Urban Transport Systems by
Cover of the book The AIDS Pandemic by
Cover of the book Tensor Algebra and Tensor Analysis for Engineers by
Cover of the book Humans by
Cover of the book Fiber Optic Sensors by
Cover of the book Psychosis or Mystical Religious Experience? by
Cover of the book Managing Water Resources under Climate Uncertainty by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy