Author: | ISBN: | 9783319574943 | |
Publisher: | Springer International Publishing | Publication: | May 24, 2017 |
Imprint: | Springer | Language: | English |
Author: | |
ISBN: | 9783319574943 |
Publisher: | Springer International Publishing |
Publication: | May 24, 2017 |
Imprint: | Springer |
Language: | English |
Based on a fundamental understanding of the interaction between bacteria and materials, this timely volume emphasizes the latest research in the antimicrobial interfacial design and provides an invaluable blueprint for improving antimicrobial performance on devices and products. Antimicrobial Coatings and Modifications targets reduction of microbial accumulation on biomedical and industrial materials through changing interfacial characteristics. Applying a viable antimicrobial coating or modification to resist alarming threats is a highly demanding requirement for many medical and engineering applications. Many contemporary books in the area of antimicrobial solution focus on applying antimicrobial agents or materials that can kill bacteria. The volume pays more attention to eliminating bacterial contamination and biofilm formation through surface characteristics with minimized bacterial resistance and environmental impact.
Based on a fundamental understanding of the interaction between bacteria and materials, this timely volume emphasizes the latest research in the antimicrobial interfacial design and provides an invaluable blueprint for improving antimicrobial performance on devices and products. Antimicrobial Coatings and Modifications targets reduction of microbial accumulation on biomedical and industrial materials through changing interfacial characteristics. Applying a viable antimicrobial coating or modification to resist alarming threats is a highly demanding requirement for many medical and engineering applications. Many contemporary books in the area of antimicrobial solution focus on applying antimicrobial agents or materials that can kill bacteria. The volume pays more attention to eliminating bacterial contamination and biofilm formation through surface characteristics with minimized bacterial resistance and environmental impact.