Apache Spark Graph Processing

Nonfiction, Computers, Database Management, Data Processing
Cover of the book Apache Spark Graph Processing by Rindra Ramamonjison, Packt Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Rindra Ramamonjison ISBN: 9781784398958
Publisher: Packt Publishing Publication: September 10, 2015
Imprint: Packt Publishing Language: English
Author: Rindra Ramamonjison
ISBN: 9781784398958
Publisher: Packt Publishing
Publication: September 10, 2015
Imprint: Packt Publishing
Language: English

Build, process and analyze large-scale graph data effectively with Spark

About This Book

  • Find solutions for every stage of data processing from loading and transforming graph data to
  • Improve the scalability of your graphs with a variety of real-world applications with complete Scala code.
  • A concise guide to processing large-scale networks with Apache Spark.

Who This Book Is For

This book is for data scientists and big data developers who want to learn the processing and analyzing graph datasets at scale. Basic programming experience with Scala is assumed. Basic knowledge of Spark is assumed.

What You Will Learn

  • Write, build and deploy Spark applications with the Scala Build Tool.
  • Build and analyze large-scale network datasets
  • Analyze and transform graphs using RDD and graph-specific operations
  • Implement new custom graph operations tailored to specific needs.
  • Develop iterative and efficient graph algorithms using message aggregation and Pregel abstraction
  • Extract subgraphs and use it to discover common clusters
  • Analyze graph data and solve various data science problems using real-world datasets.

In Detail

Apache Spark is the next standard of open-source cluster-computing engine for processing big data. Many practical computing problems concern large graphs, like the Web graph and various social networks. The scale of these graphs - in some cases billions of vertices, trillions of edges - poses challenges to their efficient processing. Apache Spark GraphX API combines the advantages of both data-parallel and graph-parallel systems by efficiently expressing graph computation within the Spark data-parallel framework.

This book will teach the user to do graphical programming in Apache Spark, apart from an explanation of the entire process of graphical data analysis. You will journey through the creation of graphs, its uses, its exploration and analysis and finally will also cover the conversion of graph elements into graph structures.

This book begins with an introduction of the Spark system, its libraries and the Scala Build Tool. Using a hands-on approach, this book will quickly teach you how to install and leverage Spark interactively on the command line and in a standalone Scala program. Then, it presents all the methods for building Spark graphs using illustrative network datasets. Next, it will walk you through the process of exploring, visualizing and analyzing different network characteristics. This book will also teach you how to transform raw datasets into a usable form. In addition, you will learn powerful operations that can be used to transform graph elements and graph structures. Furthermore, this book also teaches how to create custom graph operations that are tailored for specific needs with efficiency in mind. The later chapters of this book cover more advanced topics such as clustering graphs, implementing graph-parallel iterative algorithms and learning methods from graph data.

Style and approach

A step-by-step guide that will walk you through the key ideas and techniques for processing big graph data at scale, with practical examples that will ensure an overall understanding of the concepts of Spark.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Build, process and analyze large-scale graph data effectively with Spark

About This Book

Who This Book Is For

This book is for data scientists and big data developers who want to learn the processing and analyzing graph datasets at scale. Basic programming experience with Scala is assumed. Basic knowledge of Spark is assumed.

What You Will Learn

In Detail

Apache Spark is the next standard of open-source cluster-computing engine for processing big data. Many practical computing problems concern large graphs, like the Web graph and various social networks. The scale of these graphs - in some cases billions of vertices, trillions of edges - poses challenges to their efficient processing. Apache Spark GraphX API combines the advantages of both data-parallel and graph-parallel systems by efficiently expressing graph computation within the Spark data-parallel framework.

This book will teach the user to do graphical programming in Apache Spark, apart from an explanation of the entire process of graphical data analysis. You will journey through the creation of graphs, its uses, its exploration and analysis and finally will also cover the conversion of graph elements into graph structures.

This book begins with an introduction of the Spark system, its libraries and the Scala Build Tool. Using a hands-on approach, this book will quickly teach you how to install and leverage Spark interactively on the command line and in a standalone Scala program. Then, it presents all the methods for building Spark graphs using illustrative network datasets. Next, it will walk you through the process of exploring, visualizing and analyzing different network characteristics. This book will also teach you how to transform raw datasets into a usable form. In addition, you will learn powerful operations that can be used to transform graph elements and graph structures. Furthermore, this book also teaches how to create custom graph operations that are tailored for specific needs with efficiency in mind. The later chapters of this book cover more advanced topics such as clustering graphs, implementing graph-parallel iterative algorithms and learning methods from graph data.

Style and approach

A step-by-step guide that will walk you through the key ideas and techniques for processing big graph data at scale, with practical examples that will ensure an overall understanding of the concepts of Spark.

More books from Packt Publishing

Cover of the book Matplotlib for Python Developers by Rindra Ramamonjison
Cover of the book Gamification with Moodle by Rindra Ramamonjison
Cover of the book GeoServer Cookbook by Rindra Ramamonjison
Cover of the book Building UIs with Wijmo by Rindra Ramamonjison
Cover of the book Learning Embedded Android N Programming by Rindra Ramamonjison
Cover of the book Learning Continuous Integration with Jenkins by Rindra Ramamonjison
Cover of the book Linux Device Drivers Development by Rindra Ramamonjison
Cover of the book Node.js 6.x Blueprints by Rindra Ramamonjison
Cover of the book Getting Started with Containerization by Rindra Ramamonjison
Cover of the book PostgreSQL 9.6 High Performance by Rindra Ramamonjison
Cover of the book Network Vulnerability Assessment by Rindra Ramamonjison
Cover of the book Machine Learning with Swift by Rindra Ramamonjison
Cover of the book Microsoft SQL Server 2012 Performance Tuning Cookbook by Rindra Ramamonjison
Cover of the book Burp Suite Essentials by Rindra Ramamonjison
Cover of the book Blender 3D 2.49 Incredible Machines by Rindra Ramamonjison
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy