Artificial Intelligent Approaches in Petroleum Geosciences

Nonfiction, Science & Nature, Science, Physics, Energy, Computers, Advanced Computing, Artificial Intelligence, Technology
Cover of the book Artificial Intelligent Approaches in Petroleum Geosciences by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319165318
Publisher: Springer International Publishing Publication: April 20, 2015
Imprint: Springer Language: English
Author:
ISBN: 9783319165318
Publisher: Springer International Publishing
Publication: April 20, 2015
Imprint: Springer
Language: English

This book presents several intelligent approaches for tackling and solving challenging practical problems facing those in the petroleum geosciences and petroleum industry. Written by experienced academics, this book offers state-of-the-art working examples and provides the reader with exposure to the latest developments in the field of intelligent methods applied to oil and gas research, exploration and production. It also analyzes the strengths and weaknesses of each method presented using benchmarking, whilst also emphasizing essential parameters such as robustness, accuracy, speed of convergence, computer time, overlearning and the role of normalization. The intelligent approaches presented include artificial neural networks, fuzzy logic, active learning method, genetic algorithms and support vector machines, amongst others.

Integration, handling data of immense size and uncertainty, and dealing with risk management are among crucial issues in petroleum geosciences. The problems we have to solve in this domain are becoming too complex to rely on a single discipline for effective solutions and the costs associated with poor predictions (e.g. dry holes) increase. Therefore, there is a need to establish a new approach aimed at proper integration of disciplines (such as petroleum engineering, geology, geophysics and geochemistry), data fusion, risk reduction and uncertainty management. These intelligent techniques can be used for uncertainty analysis, risk assessment, data fusion and mining, data analysis and interpretation, and knowledge discovery, from diverse data such as 3-D seismic, geological data, well logging, and production data. This book is intended for petroleum scientists, data miners, data scientists and professionals and post-graduate students involved in petroleum industry.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book presents several intelligent approaches for tackling and solving challenging practical problems facing those in the petroleum geosciences and petroleum industry. Written by experienced academics, this book offers state-of-the-art working examples and provides the reader with exposure to the latest developments in the field of intelligent methods applied to oil and gas research, exploration and production. It also analyzes the strengths and weaknesses of each method presented using benchmarking, whilst also emphasizing essential parameters such as robustness, accuracy, speed of convergence, computer time, overlearning and the role of normalization. The intelligent approaches presented include artificial neural networks, fuzzy logic, active learning method, genetic algorithms and support vector machines, amongst others.

Integration, handling data of immense size and uncertainty, and dealing with risk management are among crucial issues in petroleum geosciences. The problems we have to solve in this domain are becoming too complex to rely on a single discipline for effective solutions and the costs associated with poor predictions (e.g. dry holes) increase. Therefore, there is a need to establish a new approach aimed at proper integration of disciplines (such as petroleum engineering, geology, geophysics and geochemistry), data fusion, risk reduction and uncertainty management. These intelligent techniques can be used for uncertainty analysis, risk assessment, data fusion and mining, data analysis and interpretation, and knowledge discovery, from diverse data such as 3-D seismic, geological data, well logging, and production data. This book is intended for petroleum scientists, data miners, data scientists and professionals and post-graduate students involved in petroleum industry.

More books from Springer International Publishing

Cover of the book Tolkien and Alterity by
Cover of the book Practical Pelvic Floor Ultrasonography by
Cover of the book Managing Sustainable Stakeholder Relationships by
Cover of the book Ecological Literature and the Critique of Anthropocentrism by
Cover of the book Cyber Security: Analytics, Technology and Automation by
Cover of the book Value Networks in Manufacturing by
Cover of the book Approximate Circuits by
Cover of the book Queueing Theory and Network Applications by
Cover of the book Cognitive Radio and Networking for Heterogeneous Wireless Networks by
Cover of the book Lightweight Cryptography for Security and Privacy by
Cover of the book Ageing in Irish Writing by
Cover of the book Advances in Shape Memory Materials by
Cover of the book Hannah Arendt's Theory of Political Action by
Cover of the book Sustainable Operations Strategies by
Cover of the book Clinical Cases in Infections and Infestations of the Skin by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy