Bacterial Activation of Type I Interferons

Nonfiction, Science & Nature, Science, Biological Sciences, Bacteriology, Health & Well Being, Medical, Medical Science, Immunology
Cover of the book Bacterial Activation of Type I Interferons by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319094984
Publisher: Springer International Publishing Publication: October 6, 2014
Imprint: Springer Language: English
Author:
ISBN: 9783319094984
Publisher: Springer International Publishing
Publication: October 6, 2014
Imprint: Springer
Language: English

The type I interferon (IFN) signaling pathway is well recognized as a pathway activated by viral infections. It is activated by a variety of microbial pattern recognition receptors including the Toll-like receptors, NOD-like receptors and several cytosolic receptors. Activation of the type I IFN pathway leads to the production of both antiviral factors and products that influence immune cell function. More recently it has been shown that bacteria are also capable of activating this pathway.

Bacterial Activation of Type I Interferonsreviews both the current understanding of how different bacterial species are able to activate this pathway as well as the influence type I IFNs have on the outcome to infection. Several different bacterial species are covered, spanning Gram positive and Gram negative, intracellular, extracellular, and different host infection sites. An introduction to the pathogenesis of each organism is provided, and the signaling molecules involved in the activation of the type I IFN pathway and the role it plays in animal infection models are also covered.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The type I interferon (IFN) signaling pathway is well recognized as a pathway activated by viral infections. It is activated by a variety of microbial pattern recognition receptors including the Toll-like receptors, NOD-like receptors and several cytosolic receptors. Activation of the type I IFN pathway leads to the production of both antiviral factors and products that influence immune cell function. More recently it has been shown that bacteria are also capable of activating this pathway.

Bacterial Activation of Type I Interferonsreviews both the current understanding of how different bacterial species are able to activate this pathway as well as the influence type I IFNs have on the outcome to infection. Several different bacterial species are covered, spanning Gram positive and Gram negative, intracellular, extracellular, and different host infection sites. An introduction to the pathogenesis of each organism is provided, and the signaling molecules involved in the activation of the type I IFN pathway and the role it plays in animal infection models are also covered.

More books from Springer International Publishing

Cover of the book Essentials of Teaching and Integrating Visual and Media Literacy by
Cover of the book Ground Improvement and Earth Structures by
Cover of the book Changing Global Perspectives on Horseshoe Crab Biology, Conservation and Management by
Cover of the book Environmental Management of River Basin Ecosystems by
Cover of the book Advances in Cryptology – EUROCRYPT 2019 by
Cover of the book Independent Random Sampling Methods by
Cover of the book The Impact of WTO SPS Law on EU Food Regulations by
Cover of the book Sustainable Agriculture Reviews by
Cover of the book A History of Abstract Algebra by
Cover of the book Philosophical, Logical and Scientific Perspectives in Engineering by
Cover of the book Mathematical Modelling and Numerical Simulation of Oil Pollution Problems by
Cover of the book Field-Based Learning in Family Life Education by
Cover of the book Runaway and Homeless Youth by
Cover of the book High-Efficiency Solar Cells by
Cover of the book Multidisciplinary Management of Common Bile Duct Stones by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy