Bayesian Inference and Maximum Entropy Methods in Science and Engineering

MaxEnt 37, Jarinu, Brazil, July 09–14, 2017

Nonfiction, Science & Nature, Science, Physics, Thermodynamics, Mathematics, Statistics
Cover of the book Bayesian Inference and Maximum Entropy Methods in Science and Engineering by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319911434
Publisher: Springer International Publishing Publication: July 12, 2018
Imprint: Springer Language: English
Author:
ISBN: 9783319911434
Publisher: Springer International Publishing
Publication: July 12, 2018
Imprint: Springer
Language: English

These proceedings from the 37th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2017), held in São Carlos, Brazil, aim to expand the available research on Bayesian methods and promote their application in the scientific community. They gather research from scholars in many different fields who use inductive statistics methods and focus on the foundations of the Bayesian paradigm, their comparison to objectivistic or frequentist statistics counterparts, and their appropriate applications. 

Interest in the foundations of inductive statistics has been growing with the increasing availability of Bayesian methodological alternatives, and scientists now face much more difficult choices in finding the optimal methods to apply to their problems. By carefully examining and discussing the relevant foundations, the scientific community can avoid applying Bayesian methods on a merely ad hoc basis. 

For over 35 years, the MaxEnt workshops have explored the use of Bayesian and Maximum Entropy methods in scientific and engineering application contexts. The workshops welcome contributions on all aspects of probabilistic inference, including novel techniques and applications, and work that sheds new light on the foundations of inference. Areas of application in these workshops include astronomy and astrophysics, chemistry, communications theory, cosmology, climate studies, earth science, fluid mechanics, genetics, geophysics, machine learning, materials science, medical imaging, nanoscience, source separation, thermodynamics (equilibrium and non-equilibrium), particle physics, plasma physics, quantum mechanics, robotics, and the social sciences. Bayesian computational techniques such as Markov chain Monte Carlo sampling are also regular topics, as are approximate inferential methods. Foundational issues involving probability theory and information theory, as well as novel applications of inference to illuminate the foundations of physical theories, are also of keen interest.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

These proceedings from the 37th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2017), held in São Carlos, Brazil, aim to expand the available research on Bayesian methods and promote their application in the scientific community. They gather research from scholars in many different fields who use inductive statistics methods and focus on the foundations of the Bayesian paradigm, their comparison to objectivistic or frequentist statistics counterparts, and their appropriate applications. 

Interest in the foundations of inductive statistics has been growing with the increasing availability of Bayesian methodological alternatives, and scientists now face much more difficult choices in finding the optimal methods to apply to their problems. By carefully examining and discussing the relevant foundations, the scientific community can avoid applying Bayesian methods on a merely ad hoc basis. 

For over 35 years, the MaxEnt workshops have explored the use of Bayesian and Maximum Entropy methods in scientific and engineering application contexts. The workshops welcome contributions on all aspects of probabilistic inference, including novel techniques and applications, and work that sheds new light on the foundations of inference. Areas of application in these workshops include astronomy and astrophysics, chemistry, communications theory, cosmology, climate studies, earth science, fluid mechanics, genetics, geophysics, machine learning, materials science, medical imaging, nanoscience, source separation, thermodynamics (equilibrium and non-equilibrium), particle physics, plasma physics, quantum mechanics, robotics, and the social sciences. Bayesian computational techniques such as Markov chain Monte Carlo sampling are also regular topics, as are approximate inferential methods. Foundational issues involving probability theory and information theory, as well as novel applications of inference to illuminate the foundations of physical theories, are also of keen interest.

More books from Springer International Publishing

Cover of the book Advances in Spatial and Temporal Databases by
Cover of the book Carnival and Power by
Cover of the book Public Management by
Cover of the book Political Leaders and Changing Local Democracy by
Cover of the book The Basal Ganglia by
Cover of the book Case-Based Lessons in the Management of Complex Hepato-Pancreato-Biliary Surgery by
Cover of the book Geometrical Themes Inspired by the N-body Problem by
Cover of the book Pediatric Anesthesiology Review by
Cover of the book Security, Privacy, and Anonymity in Computation, Communication, and Storage by
Cover of the book Evaluating Reforms of Local Public and Social Services in Europe by
Cover of the book Compressed Sensing and its Applications by
Cover of the book Post-Unification Turkish German Cinema by
Cover of the book Shadow Banking by
Cover of the book Cyber Security Cryptography and Machine Learning by
Cover of the book Air Flow Management in Raised Floor Data Centers by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy