Beauville Surfaces and Groups

Nonfiction, Science & Nature, Mathematics, Geometry, Algebra
Cover of the book Beauville Surfaces and Groups by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319138626
Publisher: Springer International Publishing Publication: April 14, 2015
Imprint: Springer Language: English
Author:
ISBN: 9783319138626
Publisher: Springer International Publishing
Publication: April 14, 2015
Imprint: Springer
Language: English

This collection of surveys and research articles explores a fascinating class of varieties: Beauville surfaces. It is the first time that these objects are discussed from the points of view of algebraic geometry as well as group theory. The book also includes various open problems and conjectures related to these surfaces.

Beauville surfaces are a class of rigid regular surfaces of general type, which can be described in a purely algebraic combinatoric way. They play an important role in different fields of mathematics like algebraic geometry, group theory and number theory. The notion of Beauville surface was introduced by Fabrizio Catanese in 2000 and after the first systematic study of these surfaces by Ingrid Bauer, Fabrizio Catanese and Fritz Grunewald, there has been an increasing interest in the subject.

These proceedings reflect the topics of the lectures presented during the workshop ‘Beauville surfaces and groups 2012’, held at Newcastle University, UK in June 2012. This conference brought together, for the first time, experts of different fields of mathematics interested in Beauville surfaces.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This collection of surveys and research articles explores a fascinating class of varieties: Beauville surfaces. It is the first time that these objects are discussed from the points of view of algebraic geometry as well as group theory. The book also includes various open problems and conjectures related to these surfaces.

Beauville surfaces are a class of rigid regular surfaces of general type, which can be described in a purely algebraic combinatoric way. They play an important role in different fields of mathematics like algebraic geometry, group theory and number theory. The notion of Beauville surface was introduced by Fabrizio Catanese in 2000 and after the first systematic study of these surfaces by Ingrid Bauer, Fabrizio Catanese and Fritz Grunewald, there has been an increasing interest in the subject.

These proceedings reflect the topics of the lectures presented during the workshop ‘Beauville surfaces and groups 2012’, held at Newcastle University, UK in June 2012. This conference brought together, for the first time, experts of different fields of mathematics interested in Beauville surfaces.

More books from Springer International Publishing

Cover of the book Optimal Trajectory Planning and Train Scheduling for Urban Rail Transit Systems by
Cover of the book A Comprehensive Cognitive Behavioral Program for Offenders by
Cover of the book Shale Analytics by
Cover of the book Health Without Borders by
Cover of the book Engineering Applications for New Materials and Technologies by
Cover of the book Bounds and Asymptotics for Orthogonal Polynomials for Varying Weights by
Cover of the book Systems Thinking and Moral Imagination by
Cover of the book Contextualizing Systems Biology by
Cover of the book ICT Systems Security and Privacy Protection by
Cover of the book Guide to Competitive Programming by
Cover of the book Full Employment and Social Justice by
Cover of the book Industrial X-Ray Computed Tomography by
Cover of the book Ascidians in Coastal Water by
Cover of the book Spectroscopic and Mechanistic Studies of Dinuclear Metallohydrolases and Their Biomimetic Complexes by
Cover of the book Handbook of Sustainability Science and Research by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy