Big Data Analytics in Genomics

Nonfiction, Computers, Advanced Computing, Computer Science, Database Management, Science & Nature, Science
Cover of the book Big Data Analytics in Genomics by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319412795
Publisher: Springer International Publishing Publication: October 24, 2016
Imprint: Springer Language: English
Author:
ISBN: 9783319412795
Publisher: Springer International Publishing
Publication: October 24, 2016
Imprint: Springer
Language: English

This contributed volume explores the emerging intersection between big data analytics and genomics. Recent sequencing technologies have enabled high-throughput sequencing data generation for genomics resulting in several international projects which have led to massive genomic data accumulation at an unprecedented pace.  To reveal novel genomic insights from this data within a reasonable time frame, traditional data analysis methods may not be sufficient or scalable, forcing the need for big data analytics to be developed for genomics. The computational methods addressed in the book are intended to tackle crucial biological questions using big data, and are appropriate for either newcomers or veterans in the field.

This volume offers thirteen peer-reviewed contributions, written by international leading experts from different regions, representing Argentina, Brazil, China, France, Germany, Hong Kong, India, Japan, Spain, and the USA.  In particular, the book surveys three main areas: statistical analytics, computational analytics, and cancer genome analytics. Sample topics covered include: statistical methods for integrative analysis of genomic data, computation methods for protein function prediction, and perspectives on machine learning techniques in big data mining of cancer. Self-contained and suitable for graduate students, this book is also designed for bioinformaticians, computational biologists, and researchers in communities ranging from genomics, big data, molecular genetics, data mining, biostatistics, biomedical science, cancer research, medical research, and biology to machine learning and computer science.  Readers will find this volume to be an essential read for appreciating the role of big data in genomics, making this an invaluable resource for stimulating further research on the topic.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This contributed volume explores the emerging intersection between big data analytics and genomics. Recent sequencing technologies have enabled high-throughput sequencing data generation for genomics resulting in several international projects which have led to massive genomic data accumulation at an unprecedented pace.  To reveal novel genomic insights from this data within a reasonable time frame, traditional data analysis methods may not be sufficient or scalable, forcing the need for big data analytics to be developed for genomics. The computational methods addressed in the book are intended to tackle crucial biological questions using big data, and are appropriate for either newcomers or veterans in the field.

This volume offers thirteen peer-reviewed contributions, written by international leading experts from different regions, representing Argentina, Brazil, China, France, Germany, Hong Kong, India, Japan, Spain, and the USA.  In particular, the book surveys three main areas: statistical analytics, computational analytics, and cancer genome analytics. Sample topics covered include: statistical methods for integrative analysis of genomic data, computation methods for protein function prediction, and perspectives on machine learning techniques in big data mining of cancer. Self-contained and suitable for graduate students, this book is also designed for bioinformaticians, computational biologists, and researchers in communities ranging from genomics, big data, molecular genetics, data mining, biostatistics, biomedical science, cancer research, medical research, and biology to machine learning and computer science.  Readers will find this volume to be an essential read for appreciating the role of big data in genomics, making this an invaluable resource for stimulating further research on the topic.

More books from Springer International Publishing

Cover of the book Mycorrhiza - Function, Diversity, State of the Art by
Cover of the book Industrial Internet of Things by
Cover of the book Investing in the Trump Era by
Cover of the book The Feminist Fourth Wave by
Cover of the book Models of Calcium Signalling by
Cover of the book Ethnic and Cultural Dimensions of Knowledge by
Cover of the book Molecular Mechanisms of Cell Differentiation in Gonad Development by
Cover of the book Innovating with Concept Mapping by
Cover of the book East Timor's Independence, Indonesia and ASEAN by
Cover of the book Integrated Uncertainty in Knowledge Modelling and Decision Making by
Cover of the book Advanced Functional Evolution Equations and Inclusions by
Cover of the book Rethinking Taxation in Latin America by
Cover of the book Diagnosis and Management of Craniopharyngiomas by
Cover of the book Norman Geras’s Political Thought from Marxism to Human Rights by
Cover of the book Gender, Otherness, and Culture in Medieval and Early Modern Art by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy