Buoyancy-Thermocapillary Convection of Volatile Fluids in Confined and Sealed Geometries

Nonfiction, Science & Nature, Science, Physics, Thermodynamics, Technology, Engineering, Mechanical
Cover of the book Buoyancy-Thermocapillary Convection of Volatile Fluids in Confined and Sealed Geometries by Tongran Qin, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Tongran Qin ISBN: 9783319613314
Publisher: Springer International Publishing Publication: July 25, 2017
Imprint: Springer Language: English
Author: Tongran Qin
ISBN: 9783319613314
Publisher: Springer International Publishing
Publication: July 25, 2017
Imprint: Springer
Language: English

This thesis represents the first systematic description of the two-phase flow problem. Two-phase flows of volatile fluids in confined geometries driven by an applied temperature gradient play an important role in a range of applications, including thermal management, such as heat pipes, thermosyphons, capillary pumped loops and other evaporative cooling devices.  Previously, this problem has been addressed using a piecemeal approach that relied heavily on correlations and unproven assumptions, and the science and technology behind heat pipes have barely evolved in recent decades. The model introduced in this thesis, however, presents a comprehensive physically based description of both the liquid and the gas phase.

The model has been implemented numerically and successfully validated against the available experimental data, and the numerical results are used to determine the key physical processes that control the heat and mass flow and describe the flow stability. One of the key contributions of this thesis work is the description of the role of noncondensables, such as air, on transport. In particular, it is shown that many of the assumptions used by current engineering models of evaporative cooling devices are based on experiments conducted at atmospheric pressures, and these assumptions break down partially or completely when most of the noncondensables are removed, requiring a new modeling approach presented in the thesis.

Moreover, Numerical solutions are used to motivate and justify a simplified analytical description of transport in both the liquid and the gas layer, which can be used to describe flow stability and determine the critical Marangoni number and wavelength describing the onset of the convective pattern. As a result, the results presented in the thesis should be of interest both to engineers working in heat transfer and researchers interested in fluid dynamics and pattern formation.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This thesis represents the first systematic description of the two-phase flow problem. Two-phase flows of volatile fluids in confined geometries driven by an applied temperature gradient play an important role in a range of applications, including thermal management, such as heat pipes, thermosyphons, capillary pumped loops and other evaporative cooling devices.  Previously, this problem has been addressed using a piecemeal approach that relied heavily on correlations and unproven assumptions, and the science and technology behind heat pipes have barely evolved in recent decades. The model introduced in this thesis, however, presents a comprehensive physically based description of both the liquid and the gas phase.

The model has been implemented numerically and successfully validated against the available experimental data, and the numerical results are used to determine the key physical processes that control the heat and mass flow and describe the flow stability. One of the key contributions of this thesis work is the description of the role of noncondensables, such as air, on transport. In particular, it is shown that many of the assumptions used by current engineering models of evaporative cooling devices are based on experiments conducted at atmospheric pressures, and these assumptions break down partially or completely when most of the noncondensables are removed, requiring a new modeling approach presented in the thesis.

Moreover, Numerical solutions are used to motivate and justify a simplified analytical description of transport in both the liquid and the gas layer, which can be used to describe flow stability and determine the critical Marangoni number and wavelength describing the onset of the convective pattern. As a result, the results presented in the thesis should be of interest both to engineers working in heat transfer and researchers interested in fluid dynamics and pattern formation.

More books from Springer International Publishing

Cover of the book Fractal Apertures in Waveguides, Conducting Screens and Cavities by Tongran Qin
Cover of the book Insect Hearing by Tongran Qin
Cover of the book Cyber-Humans by Tongran Qin
Cover of the book Computational Science and Its Applications – ICCSA 2018 by Tongran Qin
Cover of the book The New World of Utilities by Tongran Qin
Cover of the book Ergodic Optimization in the Expanding Case by Tongran Qin
Cover of the book Clinical Management of Pregnancies following ART by Tongran Qin
Cover of the book Bridging Algebra, Geometry, and Topology by Tongran Qin
Cover of the book Dynamical Systems with Applications using MATLAB® by Tongran Qin
Cover of the book Smartphone Start-ups by Tongran Qin
Cover of the book Regulation of Heat Shock Protein Responses by Tongran Qin
Cover of the book Why Greatness Cannot Be Planned by Tongran Qin
Cover of the book Precision Medicine, CRISPR, and Genome Engineering by Tongran Qin
Cover of the book Cellular Image Classification by Tongran Qin
Cover of the book Notes of a Radiology Watcher by Tongran Qin
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy