Cell Death

Mechanism and Disease

Nonfiction, Science & Nature, Science, Biological Sciences, Cytology, Other Sciences, Molecular Biology
Cover of the book Cell Death by , Springer New York
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9781461493020
Publisher: Springer New York Publication: November 19, 2013
Imprint: Springer Language: English
Author:
ISBN: 9781461493020
Publisher: Springer New York
Publication: November 19, 2013
Imprint: Springer
Language: English

Beginning from centuries of anecdotal descriptions of cell death, such as those on the development of the midwife toad in 1842 by Carl Vogt, to modern-day investigations of cell death as a biological discipline, it has become accepted that cell death in multicellular organisms is a normal part of life. This book provides a comprehensive view of cell death, from its mechanisms of initiation and execution, to its implication in human disease and therapy.

Physiological cell death plays critical roles in almost all aspects of biology, and the book details its roles in lymphocyte homeostasis, neuronal function, metabolism, and the DNA damage response. When physiological cell death goes awry, diseases can arise, and cancer is presented as a central paradigm for the consequences of derangements in the interplay between cell survival and cell death. At the same time, the potential promise of targeted therapies aimed at interdicting cell death machineries are also discussed extensively. The molecular mechanisms that underlie apoptotic cell death are illustrated from the perspectives of both the intrinsic, mitochondrial apoptotic pathway and the extrinsic, death receptor pathway. Key players in these pathways, such as the Bcl2 family proteins, cytochrome c, Apaf-1, caspases, death receptor adapter proteins, and inhibitor of apoptosis proteins, are presented from both functional and structural angles. Until only a few years ago, programmed cell death has been considered essentially synonymous with apoptosis. However, we now know that programmed cell death can also take other forms such as necrosis or necroptosis, and to this end, the mechanisms that underlie programmed necrosis in development and host defense are illustrated. The past twenty plus years have seen an incredible growth of research in cell death, with one breakthrough after another, and the legacy still goes on with constant new surprises and findings. Long live cell death!

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Beginning from centuries of anecdotal descriptions of cell death, such as those on the development of the midwife toad in 1842 by Carl Vogt, to modern-day investigations of cell death as a biological discipline, it has become accepted that cell death in multicellular organisms is a normal part of life. This book provides a comprehensive view of cell death, from its mechanisms of initiation and execution, to its implication in human disease and therapy.

Physiological cell death plays critical roles in almost all aspects of biology, and the book details its roles in lymphocyte homeostasis, neuronal function, metabolism, and the DNA damage response. When physiological cell death goes awry, diseases can arise, and cancer is presented as a central paradigm for the consequences of derangements in the interplay between cell survival and cell death. At the same time, the potential promise of targeted therapies aimed at interdicting cell death machineries are also discussed extensively. The molecular mechanisms that underlie apoptotic cell death are illustrated from the perspectives of both the intrinsic, mitochondrial apoptotic pathway and the extrinsic, death receptor pathway. Key players in these pathways, such as the Bcl2 family proteins, cytochrome c, Apaf-1, caspases, death receptor adapter proteins, and inhibitor of apoptosis proteins, are presented from both functional and structural angles. Until only a few years ago, programmed cell death has been considered essentially synonymous with apoptosis. However, we now know that programmed cell death can also take other forms such as necrosis or necroptosis, and to this end, the mechanisms that underlie programmed necrosis in development and host defense are illustrated. The past twenty plus years have seen an incredible growth of research in cell death, with one breakthrough after another, and the legacy still goes on with constant new surprises and findings. Long live cell death!

More books from Springer New York

Cover of the book Smart Mobile In-Vehicle Systems by
Cover of the book Hear Where We Are by
Cover of the book The Challenge of CMC Regulatory Compliance for Biopharmaceuticals by
Cover of the book Protein Tyrosine Phosphatases in Cancer by
Cover of the book Radiation Therapy Study Guide by
Cover of the book Solid State Lighting Reliability by
Cover of the book Reviews of Environmental Contamination and Toxicology by
Cover of the book ART and the Human Blastocyst by
Cover of the book Celiac Disease by
Cover of the book Information Technology for Small Business by
Cover of the book Combat Radiology by
Cover of the book National Intellectual Capital and the Financial Crisis in Greece, Italy, Portugal, and Spain by
Cover of the book New Software Engineering Paradigm Based on Complexity Science by
Cover of the book Number Theory, Analysis and Geometry by
Cover of the book Somatic Genome Manipulation by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy