Classical Mirror Symmetry

Nonfiction, Science & Nature, Science, Physics, Mathematical Physics, Quantum Theory
Cover of the book Classical Mirror Symmetry by Masao Jinzenji, Springer Singapore
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Masao Jinzenji ISBN: 9789811300561
Publisher: Springer Singapore Publication: April 18, 2018
Imprint: Springer Language: English
Author: Masao Jinzenji
ISBN: 9789811300561
Publisher: Springer Singapore
Publication: April 18, 2018
Imprint: Springer
Language: English

This book furnishes a brief introduction to classical mirror symmetry, a term that denotes the process of computing Gromov–Witten invariants of a Calabi–Yau threefold by using the Picard–Fuchs differential equation of period integrals of its mirror Calabi–Yau threefold. The book concentrates on the best-known example, the quintic hypersurface in 4-dimensional projective space, and its mirror manifold.

First, there is a brief review of the process of discovery of mirror symmetry and the striking result proposed in the celebrated paper by Candelas and his collaborators. Next, some elementary results of complex manifolds and Chern classes needed for study of mirror symmetry are explained. Then the topological sigma models, the A-model and the B-model, are introduced. The classical mirror symmetry hypothesis is explained as the equivalence between the correlation function of the A-model of a quintic hyper-surface and that of the B-model of its mirror manifold.

On the B-model side, the process of construction of a pair of mirror Calabi–Yau threefold using toric geometry is briefly explained. Also given are detailed explanations of the derivation of the Picard–Fuchs differential equation of the period integrals and on the process of deriving the instanton expansion of the A-model Yukawa coupling based on the mirror symmetry hypothesis.

On the A-model side, the moduli space of degree d quasimaps from CP^1 with two marked points to CP^4 is introduced, with reconstruction of the period integrals used in the B-model side as generating functions of the intersection numbers of the moduli space. Lastly, a mathematical justification for the process of the B-model computation from the point of view of the geometry of the moduli space of quasimaps is given.

The style of description is between that of mathematics and physics, with the assumption that readers have standard graduate student backgrounds in both disciplines.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book furnishes a brief introduction to classical mirror symmetry, a term that denotes the process of computing Gromov–Witten invariants of a Calabi–Yau threefold by using the Picard–Fuchs differential equation of period integrals of its mirror Calabi–Yau threefold. The book concentrates on the best-known example, the quintic hypersurface in 4-dimensional projective space, and its mirror manifold.

First, there is a brief review of the process of discovery of mirror symmetry and the striking result proposed in the celebrated paper by Candelas and his collaborators. Next, some elementary results of complex manifolds and Chern classes needed for study of mirror symmetry are explained. Then the topological sigma models, the A-model and the B-model, are introduced. The classical mirror symmetry hypothesis is explained as the equivalence between the correlation function of the A-model of a quintic hyper-surface and that of the B-model of its mirror manifold.

On the B-model side, the process of construction of a pair of mirror Calabi–Yau threefold using toric geometry is briefly explained. Also given are detailed explanations of the derivation of the Picard–Fuchs differential equation of the period integrals and on the process of deriving the instanton expansion of the A-model Yukawa coupling based on the mirror symmetry hypothesis.

On the A-model side, the moduli space of degree d quasimaps from CP^1 with two marked points to CP^4 is introduced, with reconstruction of the period integrals used in the B-model side as generating functions of the intersection numbers of the moduli space. Lastly, a mathematical justification for the process of the B-model computation from the point of view of the geometry of the moduli space of quasimaps is given.

The style of description is between that of mathematics and physics, with the assumption that readers have standard graduate student backgrounds in both disciplines.

More books from Springer Singapore

Cover of the book Internationalization of Higher Education by Masao Jinzenji
Cover of the book Advanced High Strength Steel by Masao Jinzenji
Cover of the book Researching Conflict, Drama and Learning by Masao Jinzenji
Cover of the book Plant Biotechnology: Principles and Applications by Masao Jinzenji
Cover of the book Innovations in Computer Science and Engineering by Masao Jinzenji
Cover of the book Understanding the Impact of INSET on Teacher Change in China by Masao Jinzenji
Cover of the book Plasma-based Radar Cross Section Reduction by Masao Jinzenji
Cover of the book Anti-reflection and Light Trapping in c-Si Solar Cells by Masao Jinzenji
Cover of the book Exercise for Cardiovascular Disease Prevention and Treatment by Masao Jinzenji
Cover of the book Electromigration Modeling at Circuit Layout Level by Masao Jinzenji
Cover of the book Language Across the Curriculum & CLIL in English as an Additional Language (EAL) Contexts by Masao Jinzenji
Cover of the book Robot Intelligence Technology and Applications by Masao Jinzenji
Cover of the book System and Architecture by Masao Jinzenji
Cover of the book Frequency Selective Surfaces based High Performance Microstrip Antenna by Masao Jinzenji
Cover of the book Advanced Discrete-Time Control by Masao Jinzenji
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy