Collective Dynamics of Particles

From Viscous to Turbulent Flows

Nonfiction, Science & Nature, Mathematics, Applied, Technology, Engineering, Mechanical
Cover of the book Collective Dynamics of Particles by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319512266
Publisher: Springer International Publishing Publication: February 21, 2017
Imprint: Springer Language: English
Author:
ISBN: 9783319512266
Publisher: Springer International Publishing
Publication: February 21, 2017
Imprint: Springer
Language: English

The book surveys the state-of-the-art methods that are currently available to model and simulate the presence of rigid particles in a fluid flow. For particles that are very small relative to the characteristic flow scales and move without interaction with other particles, effective equations of motion for particle tracking are formulated and applied (e.g. in gas-solid flows). For larger particles, for particles in liquid-solid flows and for particles that interact with each other or possibly modify the overall flow detailed model are presented. Special attention is given to the description of the approximate force coupling method (FCM) as a more general treatment for small particles, and derivations in the context of low Reynolds numbers for the particle motion as well as application at finite Reynolds numbers are provided. Other topics discussed in the book are the relation to higher resolution immersed boundary methods, possible extensions to non-spherical particles and examples of applications of such methods to dispersed multiphase flows.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The book surveys the state-of-the-art methods that are currently available to model and simulate the presence of rigid particles in a fluid flow. For particles that are very small relative to the characteristic flow scales and move without interaction with other particles, effective equations of motion for particle tracking are formulated and applied (e.g. in gas-solid flows). For larger particles, for particles in liquid-solid flows and for particles that interact with each other or possibly modify the overall flow detailed model are presented. Special attention is given to the description of the approximate force coupling method (FCM) as a more general treatment for small particles, and derivations in the context of low Reynolds numbers for the particle motion as well as application at finite Reynolds numbers are provided. Other topics discussed in the book are the relation to higher resolution immersed boundary methods, possible extensions to non-spherical particles and examples of applications of such methods to dispersed multiphase flows.

More books from Springer International Publishing

Cover of the book Logic in the Theory and Practice of Lawmaking by
Cover of the book Quality Breeding in Field Crops by
Cover of the book Empirical Asset Pricing Models by
Cover of the book The Impact of WTO SPS Law on EU Food Regulations by
Cover of the book High Performance Computing in Science and Engineering ‘14 by
Cover of the book Water Resources and Food Security in the Vietnam Mekong Delta by
Cover of the book Modeling of Nanotoxicity by
Cover of the book First Search for the EMC Effect and Nuclear Shadowing in Neutrino Nuclear Deep Inelastic Scattering at MINERvA by
Cover of the book Runtime Verification by
Cover of the book STEM and ICT Education in Intelligent Environments by
Cover of the book Playful Memories by
Cover of the book Economic Perspectives on Craft Beer by
Cover of the book All-Optical Signal Processing by
Cover of the book Audio Watermark by
Cover of the book Software Architecture by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy