Computational Nanotechnology Using Finite Difference Time Domain

Nonfiction, Science & Nature, Technology, Microwaves, Electricity, Science, Physics, General Physics
Cover of the book Computational Nanotechnology Using Finite Difference Time Domain by , CRC Press
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9781351831734
Publisher: CRC Press Publication: December 19, 2017
Imprint: CRC Press Language: English
Author:
ISBN: 9781351831734
Publisher: CRC Press
Publication: December 19, 2017
Imprint: CRC Press
Language: English

The Finite Difference Time Domain (FDTD) method is an essential tool in modeling inhomogeneous, anisotropic, and dispersive media with random, multilayered, and periodic fundamental (or device) nanostructures due to its features of extreme flexibility and easy implementation. It has led to many new discoveries concerning guided modes in nanoplasmonic waveguides and continues to attract attention from researchers across the globe.

Written in a manner that is easily digestible to beginners and useful to seasoned professionals, Computational Nanotechnology Using Finite Difference Time Domain describes the key concepts of the computational FDTD method used in nanotechnology. The book discusses the newest and most popular computational nanotechnologies using the FDTD method, considering their primary benefits. It also predicts future applications of nanotechnology in technical industry by examining the results of interdisciplinary research conducted by world-renowned experts.

Complete with case studies, examples, supportive appendices, and FDTD codes accessible via a companion website, Computational Nanotechnology Using Finite Difference Time Domain not only delivers a practical introduction to the use of FDTD in nanotechnology but also serves as a valuable reference for academia and professionals working in the fields of physics, chemistry, biology, medicine, material science, quantum science, electrical and electronic engineering, electromagnetics, photonics, optical science, computer science, mechanical engineering, chemical engineering, and aerospace engineering.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The Finite Difference Time Domain (FDTD) method is an essential tool in modeling inhomogeneous, anisotropic, and dispersive media with random, multilayered, and periodic fundamental (or device) nanostructures due to its features of extreme flexibility and easy implementation. It has led to many new discoveries concerning guided modes in nanoplasmonic waveguides and continues to attract attention from researchers across the globe.

Written in a manner that is easily digestible to beginners and useful to seasoned professionals, Computational Nanotechnology Using Finite Difference Time Domain describes the key concepts of the computational FDTD method used in nanotechnology. The book discusses the newest and most popular computational nanotechnologies using the FDTD method, considering their primary benefits. It also predicts future applications of nanotechnology in technical industry by examining the results of interdisciplinary research conducted by world-renowned experts.

Complete with case studies, examples, supportive appendices, and FDTD codes accessible via a companion website, Computational Nanotechnology Using Finite Difference Time Domain not only delivers a practical introduction to the use of FDTD in nanotechnology but also serves as a valuable reference for academia and professionals working in the fields of physics, chemistry, biology, medicine, material science, quantum science, electrical and electronic engineering, electromagnetics, photonics, optical science, computer science, mechanical engineering, chemical engineering, and aerospace engineering.

More books from CRC Press

Cover of the book Tissue Type Plasminogen Activity by
Cover of the book Emerging Syntheses In Science by
Cover of the book Construction Contracts by
Cover of the book Lubrication of Electrical and Mechanical Components in Electric Power Equipment by
Cover of the book Silicone Dispersions by
Cover of the book Design of Fishways and Other Fish Facilities by
Cover of the book Financial Protection in the UK Building Industry by
Cover of the book Introduction to Bioenergy by
Cover of the book Predictive and Optimised Life Cycle Management by
Cover of the book General Engineering Knowledge by
Cover of the book Industrial and Business Space Development by
Cover of the book Stochastic Communities by
Cover of the book Opportunistic Networks by
Cover of the book Nanomagnetic Actuation in Biomedicine by
Cover of the book A Guide to Landlord and Tenant Law by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy