Cytochrome Complexes: Evolution, Structures, Energy Transduction, and Signaling

Nonfiction, Science & Nature, Science, Biological Sciences, Botany
Cover of the book Cytochrome Complexes: Evolution, Structures, Energy Transduction, and Signaling by , Springer Netherlands
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9789401774819
Publisher: Springer Netherlands Publication: June 14, 2016
Imprint: Springer Language: English
Author:
ISBN: 9789401774819
Publisher: Springer Netherlands
Publication: June 14, 2016
Imprint: Springer
Language: English

An Introduction that describes the origin of cytochrome notation also connects to the history of the field, focusing on research in England in the pre-World War II era.  The start of the modern era of studies on structure-function of cytochromes and energy-transducing membrane proteins was marked by the 1988 Nobel Prize in Chemistry, given to J. Deisenhofer, H. Michel, and R. Huber for determination of the crystal structure of the bacterial photosynthetic reaction center. An ab initio logic of presentation in the book discusses the evolution of cytochromes and hemes, followed by theoretical perspectives on electron transfer in proteins and specifically in cytochromes. There is an extensive description of the molecular structures of cytochromes and cytochrome complexes from eukaryotic and prokaryotic sources, bacterial, plant and animal. The presentation of atomic structure information has a major role in these discussions, and makes an important contribution to the broad field of membrane protein structure-function. 

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

An Introduction that describes the origin of cytochrome notation also connects to the history of the field, focusing on research in England in the pre-World War II era.  The start of the modern era of studies on structure-function of cytochromes and energy-transducing membrane proteins was marked by the 1988 Nobel Prize in Chemistry, given to J. Deisenhofer, H. Michel, and R. Huber for determination of the crystal structure of the bacterial photosynthetic reaction center. An ab initio logic of presentation in the book discusses the evolution of cytochromes and hemes, followed by theoretical perspectives on electron transfer in proteins and specifically in cytochromes. There is an extensive description of the molecular structures of cytochromes and cytochrome complexes from eukaryotic and prokaryotic sources, bacterial, plant and animal. The presentation of atomic structure information has a major role in these discussions, and makes an important contribution to the broad field of membrane protein structure-function. 

More books from Springer Netherlands

Cover of the book A Collection of Polish Works on Philosophical Problems of Time and Spacetime by
Cover of the book The Earth's Magnetic Interior by
Cover of the book Higher Education in Portugal 1974-2009 by
Cover of the book Engineering Geology for Underground Works by
Cover of the book Efficiency, Sustainability, and Justice to Future Generations by
Cover of the book Forest Hydrology and Biogeochemistry by
Cover of the book The DNA Damage Response: Implications on Cancer Formation and Treatment by
Cover of the book Trends in Hepatology by
Cover of the book Hegel on the Soul by
Cover of the book Mathematical Intuition by
Cover of the book Arthropod Management in Vineyards: by
Cover of the book Teleparallel Gravity by
Cover of the book Megacities by
Cover of the book Transformations Through Space and Time by
Cover of the book Automatic trend estimation by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy