Device Applications of Silicon Nanocrystals and Nanostructures

Nonfiction, Science & Nature, Technology, Nanotechnology, Material Science
Cover of the book Device Applications of Silicon Nanocrystals and Nanostructures by , Springer US
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9780387786896
Publisher: Springer US Publication: December 11, 2008
Imprint: Springer Language: English
Author:
ISBN: 9780387786896
Publisher: Springer US
Publication: December 11, 2008
Imprint: Springer
Language: English

Recent developments in the technology of silicon nanocrystals and silicon nanostructures, where quantum-size effects are important, are systematically described including examples of device applications. Due to the strong quantum confinement effect, the material properties are freed from the usual indirect- or direct-bandgap regime, and the optical, electrical, thermal, and chemical properties of these nanocrystalline and nanostructured semiconductors are drastically changed from those of bulk silicon. In addition to efficient visible luminescence, various other useful material functions are induced in nanocrystalline silicon and periodic silicon nanostructures. Some novel devices and applications, in fields such as photonics (electroluminescence diode, microcavity, and waveguide), electronics (single-electron device, spin transistor, nonvolatile memory, and ballistic electron emitter), acoustics, and biology, have been developed by the use of these quantum-induced functions in ways different from the conventional scaling principle for ULSI.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Recent developments in the technology of silicon nanocrystals and silicon nanostructures, where quantum-size effects are important, are systematically described including examples of device applications. Due to the strong quantum confinement effect, the material properties are freed from the usual indirect- or direct-bandgap regime, and the optical, electrical, thermal, and chemical properties of these nanocrystalline and nanostructured semiconductors are drastically changed from those of bulk silicon. In addition to efficient visible luminescence, various other useful material functions are induced in nanocrystalline silicon and periodic silicon nanostructures. Some novel devices and applications, in fields such as photonics (electroluminescence diode, microcavity, and waveguide), electronics (single-electron device, spin transistor, nonvolatile memory, and ballistic electron emitter), acoustics, and biology, have been developed by the use of these quantum-induced functions in ways different from the conventional scaling principle for ULSI.

More books from Springer US

Cover of the book Encyclopedia of Prehistory by
Cover of the book No-Tillage Agriculture by
Cover of the book Dynamic Failure of Materials and Structures by
Cover of the book The Social Psychology of Politics by
Cover of the book The Ventricle by
Cover of the book Unified low-power design flow for data-dominated multi-media and telecom applications by
Cover of the book Feed Management in Intensive Aquaculture by
Cover of the book Effective Communication Skills for Health Professionals by
Cover of the book Prevention and Treatment of Contraceptive Failure by
Cover of the book Biofeedback and Sports Science by
Cover of the book Hepatic Encephalopathy in Chronic Liver Failure by
Cover of the book Learning and Cognition in Autism by
Cover of the book The Stressed Heart by
Cover of the book Conductive Polymers and Plastics by
Cover of the book Ethics in Community Mental Health Care by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy