Throughout time, scientists have looked to nature in order to understand and model solutions for complex real-world problems. In particular, the study of self-organizing entities, such as social insect populations, presents a new opportunity within the field of artificial intelligence. Emerging Research on Swarm Intelligence and Algorithm Optimization discusses current research analyzing how the collective behavior of decentralized systems in the natural world can be applied to intelligent system design. Discussing the application of swarm principles, optimization techniques, and key algorithms being used in the field, this publication serves as an essential reference for academicians, upper-level students, IT developers, and IT theorists.
Throughout time, scientists have looked to nature in order to understand and model solutions for complex real-world problems. In particular, the study of self-organizing entities, such as social insect populations, presents a new opportunity within the field of artificial intelligence. Emerging Research on Swarm Intelligence and Algorithm Optimization discusses current research analyzing how the collective behavior of decentralized systems in the natural world can be applied to intelligent system design. Discussing the application of swarm principles, optimization techniques, and key algorithms being used in the field, this publication serves as an essential reference for academicians, upper-level students, IT developers, and IT theorists.