Energy and Entropy

Equilibrium to Stationary States

Nonfiction, Science & Nature, Science, Physics, Thermodynamics, Chemistry, Physical & Theoretical
Cover of the book Energy and Entropy by Michael E. Starzak, Springer New York
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Michael E. Starzak ISBN: 9780387778235
Publisher: Springer New York Publication: December 9, 2009
Imprint: Springer Language: English
Author: Michael E. Starzak
ISBN: 9780387778235
Publisher: Springer New York
Publication: December 9, 2009
Imprint: Springer
Language: English

The study of thermodynamics is often limited to classical thermodynamics where minimal laws and concepts lead to a wealth of equations and applications. The resultant equations best describe systems at equilibrium with no temporal or s- tial parameters. The equations do, however, often provide accurate descriptions for systems close to equilibrium. . Statistical thermodynamics produces the same equilibrium information starting with the microscopic properties of the atoms or molecules in the system that correlates with the results from macroscopic classical thermodynamics. Because both these disciplines develop a wealth of information from a few starting postulates, e. g. , the laws of thermodyamics, they are often introduced as independent disciplines. However, the concepts and techniques dev- oped for these disciplines are extremely useful in many other disciplines. This book is intended to provide an introduction to these disciplines while revealing the connections between them. Chemical kinetics uses the statistics and probabilities developed for statistical thermodynamics to explain the evolution of a system to equilibrium. Irreversible thermodynamics, which is developed from the equations of classical thermodyn- ics, centers on distance-dependent forces, and time-dependent ?uxes. The force ?ux equations of irreversible thermodynamics lead are generated from the intensive and extensive variables of classical thermodynamics. These force ?ux equations lead, in turn, to transport equations such as Fick’s ?rst law of diffusion and the Nernst Planck equation for electrochemical transport. The book illustrates the concepts using some simple examples.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The study of thermodynamics is often limited to classical thermodynamics where minimal laws and concepts lead to a wealth of equations and applications. The resultant equations best describe systems at equilibrium with no temporal or s- tial parameters. The equations do, however, often provide accurate descriptions for systems close to equilibrium. . Statistical thermodynamics produces the same equilibrium information starting with the microscopic properties of the atoms or molecules in the system that correlates with the results from macroscopic classical thermodynamics. Because both these disciplines develop a wealth of information from a few starting postulates, e. g. , the laws of thermodyamics, they are often introduced as independent disciplines. However, the concepts and techniques dev- oped for these disciplines are extremely useful in many other disciplines. This book is intended to provide an introduction to these disciplines while revealing the connections between them. Chemical kinetics uses the statistics and probabilities developed for statistical thermodynamics to explain the evolution of a system to equilibrium. Irreversible thermodynamics, which is developed from the equations of classical thermodyn- ics, centers on distance-dependent forces, and time-dependent ?uxes. The force ?ux equations of irreversible thermodynamics lead are generated from the intensive and extensive variables of classical thermodynamics. These force ?ux equations lead, in turn, to transport equations such as Fick’s ?rst law of diffusion and the Nernst Planck equation for electrochemical transport. The book illustrates the concepts using some simple examples.

More books from Springer New York

Cover of the book Practical Urological Ultrasound by Michael E. Starzak
Cover of the book Gorda Ridge by Michael E. Starzak
Cover of the book Acneiform Eruptions in Dermatology by Michael E. Starzak
Cover of the book National Strategies to Harness Information Technology by Michael E. Starzak
Cover of the book Making the DSM-5 by Michael E. Starzak
Cover of the book LGBT Psychology by Michael E. Starzak
Cover of the book Duplex Sonography by Michael E. Starzak
Cover of the book Control and Optimization Methods for Electric Smart Grids by Michael E. Starzak
Cover of the book Terraforming: The Creating of Habitable Worlds by Michael E. Starzak
Cover of the book Topics in Experimental Dynamics Substructuring and Wind Turbine Dynamics, Volume 2 by Michael E. Starzak
Cover of the book Nanotechnology for Chemical and Biological Defense by Michael E. Starzak
Cover of the book Central American Biodiversity by Michael E. Starzak
Cover of the book Residue Reviews by Michael E. Starzak
Cover of the book Oxygen Transport to Tissue XXXV by Michael E. Starzak
Cover of the book The Era of Interactive Media by Michael E. Starzak
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy