Ensemble Machine Learning

Methods and Applications

Nonfiction, Computers, Advanced Computing, Artificial Intelligence, Database Management, General Computing
Cover of the book Ensemble Machine Learning by , Springer New York
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9781441993267
Publisher: Springer New York Publication: February 17, 2012
Imprint: Springer Language: English
Author:
ISBN: 9781441993267
Publisher: Springer New York
Publication: February 17, 2012
Imprint: Springer
Language: English

It is common wisdom that gathering a variety of views and inputs improves the process of decision making, and, indeed, underpins a democratic society. Dubbed “ensemble learning” by researchers in computational intelligence and machine learning, it is known to improve a decision system’s robustness and accuracy. Now, fresh developments are allowing researchers to unleash the power of ensemble learning in an increasing range of real-world applications. Ensemble learning algorithms such as “boosting” and “random forest” facilitate solutions to key computational issues such as face recognition and are now being applied in areas as diverse as object tracking and bioinformatics.

 

Responding to a shortage of literature dedicated to the topic, this volume offers comprehensive coverage of state-of-the-art ensemble learning techniques, including the random forest skeleton tracking algorithm in the Xbox Kinect sensor, which bypasses the need for game controllers. At once a solid theoretical study and a practical guide, the volume is a windfall for researchers and practitioners alike.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

It is common wisdom that gathering a variety of views and inputs improves the process of decision making, and, indeed, underpins a democratic society. Dubbed “ensemble learning” by researchers in computational intelligence and machine learning, it is known to improve a decision system’s robustness and accuracy. Now, fresh developments are allowing researchers to unleash the power of ensemble learning in an increasing range of real-world applications. Ensemble learning algorithms such as “boosting” and “random forest” facilitate solutions to key computational issues such as face recognition and are now being applied in areas as diverse as object tracking and bioinformatics.

 

Responding to a shortage of literature dedicated to the topic, this volume offers comprehensive coverage of state-of-the-art ensemble learning techniques, including the random forest skeleton tracking algorithm in the Xbox Kinect sensor, which bypasses the need for game controllers. At once a solid theoretical study and a practical guide, the volume is a windfall for researchers and practitioners alike.

More books from Springer New York

Cover of the book Hegemony and Sovereign Equality by
Cover of the book Party Governance and Party Democracy by
Cover of the book GHRH, GH, and IGF-I by
Cover of the book Physical Activity Across the Lifespan by
Cover of the book The Politics of Reparations and Apologies by
Cover of the book Modelling and Simulation in Fluid Dynamics in Porous Media by
Cover of the book Pediatric Gastroenterology and Nutrition by
Cover of the book Handbook of Race and Development in Mental Health by
Cover of the book Celiac Disease by
Cover of the book School Shootings by
Cover of the book Brain Theory From A Circuits And Systems Perspective by
Cover of the book The Internet for Physicians by
Cover of the book Digital Da Vinci by
Cover of the book Psychodynamic Perspectives on Aging and Illness by
Cover of the book Exploring Ancient Skies by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy