Extrasynaptic GABAA Receptors

Nonfiction, Health & Well Being, Medical, Medical Science, Pharmacology, Specialties, Internal Medicine, Neuroscience, Science & Nature, Science
Cover of the book Extrasynaptic GABAA Receptors by , Springer New York
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9781493914265
Publisher: Springer New York Publication: September 22, 2014
Imprint: Springer Language: English
Author:
ISBN: 9781493914265
Publisher: Springer New York
Publication: September 22, 2014
Imprint: Springer
Language: English

GABA is the principal inhibitory neurotransmitter in the CNS and acts via GABAA and GABAB receptors. Recently, a novel form of GABAA receptor-mediated inhibition, termed “tonic” inhibition, has been described. Whereas synaptic GABAA receptors underlie classical “phasic” GABAA receptor-mediated inhibition (inhibitory postsynaptic currents), tonic GABAA receptor-mediated inhibition results from the activation of extrasynaptic receptors by low concentrations of ambient GABA. Extrasynaptic GABAA receptors are composed of receptor subunits that convey biophysical properties ideally suited to the generation of persistent inhibition and are pharmacologically and functionally distinct from their synaptic counterparts. This book highlights ongoing work examining the properties of recombinant and native extrasynaptic GABAA receptors and their preferential targeting by endogenous and clinically relevant agents. In addition, it emphasizes the important role of extrasynaptic GABAA receptors in GABAergic inhibition throughout the CNS and identifies them as a major player in both physiological and pathophysiological processes.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

GABA is the principal inhibitory neurotransmitter in the CNS and acts via GABAA and GABAB receptors. Recently, a novel form of GABAA receptor-mediated inhibition, termed “tonic” inhibition, has been described. Whereas synaptic GABAA receptors underlie classical “phasic” GABAA receptor-mediated inhibition (inhibitory postsynaptic currents), tonic GABAA receptor-mediated inhibition results from the activation of extrasynaptic receptors by low concentrations of ambient GABA. Extrasynaptic GABAA receptors are composed of receptor subunits that convey biophysical properties ideally suited to the generation of persistent inhibition and are pharmacologically and functionally distinct from their synaptic counterparts. This book highlights ongoing work examining the properties of recombinant and native extrasynaptic GABAA receptors and their preferential targeting by endogenous and clinically relevant agents. In addition, it emphasizes the important role of extrasynaptic GABAA receptors in GABAergic inhibition throughout the CNS and identifies them as a major player in both physiological and pathophysiological processes.

More books from Springer New York

Cover of the book Viral Molecular Machines by
Cover of the book Nanorobotics by
Cover of the book Hypertension in High Risk African Americans by
Cover of the book An Invitation to Abstract Mathematics by
Cover of the book Functional Symptoms in Pediatric Disease by
Cover of the book School Shootings by
Cover of the book Critical Issues for the Development of Sustainable E-health Solutions by
Cover of the book Embedded Software Design and Programming of Multiprocessor System-on-Chip by
Cover of the book Treatment of Chronic Pain by Medical Approaches by
Cover of the book Pharmaceutical Biotechnology by
Cover of the book Designing 2D and 3D Network-on-Chip Architectures by
Cover of the book Substance Abusing Inmates by
Cover of the book Accounting and Regulation by
Cover of the book Transport Processes in Space Physics and Astrophysics by
Cover of the book Analog Dithering Techniques for Wireless Transmitters by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy