Author: | J. Brian Jordon, Robert Amaro, Paul Allison, Harish Rao | ISBN: | 9780128163054 |
Publisher: | Elsevier Science | Publication: | February 27, 2019 |
Imprint: | Butterworth-Heinemann | Language: | English |
Author: | J. Brian Jordon, Robert Amaro, Paul Allison, Harish Rao |
ISBN: | 9780128163054 |
Publisher: | Elsevier Science |
Publication: | February 27, 2019 |
Imprint: | Butterworth-Heinemann |
Language: | English |
Fatigue in Friction Stir Welding provides knowledge on how to design and fabricate high performance, fatigue resistance FSW joints. It summarizes fatigue characterizations of key FSW configurations, including butt and lap-shear joints. The book's main focus is on fatigue of aluminum alloys, but discussions of magnesium, steel, and titanium alloys are also included. The FSW process-structure-fatigue performance relationships, including tool rotation, travel speeds, and pin tools are covered, along with sections on extreme fatigue conditions and environments, including multiaxial, variable amplitude, and corrosion effects on fatigue of the FSW.
From a practical design perspective, appropriate fatigue design guidelines, including engineering and microstructure-sensitive modeling approaches are discussed. Finally, an appendix with numerous representative fatigue curves for design and reference purposes completes the work.
Fatigue in Friction Stir Welding provides knowledge on how to design and fabricate high performance, fatigue resistance FSW joints. It summarizes fatigue characterizations of key FSW configurations, including butt and lap-shear joints. The book's main focus is on fatigue of aluminum alloys, but discussions of magnesium, steel, and titanium alloys are also included. The FSW process-structure-fatigue performance relationships, including tool rotation, travel speeds, and pin tools are covered, along with sections on extreme fatigue conditions and environments, including multiaxial, variable amplitude, and corrosion effects on fatigue of the FSW.
From a practical design perspective, appropriate fatigue design guidelines, including engineering and microstructure-sensitive modeling approaches are discussed. Finally, an appendix with numerous representative fatigue curves for design and reference purposes completes the work.