Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems

FVCA 7, Berlin, June 2014

Nonfiction, Science & Nature, Mathematics, Number Systems, Science, Physics, Mathematical Physics
Cover of the book Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319055916
Publisher: Springer International Publishing Publication: May 16, 2014
Imprint: Springer Language: English
Author:
ISBN: 9783319055916
Publisher: Springer International Publishing
Publication: May 16, 2014
Imprint: Springer
Language: English

The methods considered in the 7th conference on "Finite Volumes for Complex Applications" (Berlin, June 2014) have properties which offer distinct advantages for a number of applications. The second volume of the proceedings covers reviewed contributions reporting successful applications in the fields of fluid dynamics, magnetohydrodynamics, structural analysis, nuclear physics, semiconductor theory and other topics.

The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation. Recent decades have brought significant success in the theoretical understanding of the method. Many finite volume methods preserve further qualitative or asymptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications.

Researchers, PhD and masters level students in numerical analysis, scientific computing and related fields such as partial differential equations will find this volume useful, as will engineers working in numerical modeling and simulations.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The methods considered in the 7th conference on "Finite Volumes for Complex Applications" (Berlin, June 2014) have properties which offer distinct advantages for a number of applications. The second volume of the proceedings covers reviewed contributions reporting successful applications in the fields of fluid dynamics, magnetohydrodynamics, structural analysis, nuclear physics, semiconductor theory and other topics.

The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation. Recent decades have brought significant success in the theoretical understanding of the method. Many finite volume methods preserve further qualitative or asymptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications.

Researchers, PhD and masters level students in numerical analysis, scientific computing and related fields such as partial differential equations will find this volume useful, as will engineers working in numerical modeling and simulations.

More books from Springer International Publishing

Cover of the book Handbook of School-Based Mental Health Promotion by
Cover of the book Application of Surrogate-based Global Optimization to Aerodynamic Design by
Cover of the book The Impact of Critical Rationalism by
Cover of the book Dynamics and Mechanism of DNA-Bending Proteins in Binding Site Recognition by
Cover of the book Complex Networks IX by
Cover of the book Building Sustainable Health Ecosystems by
Cover of the book Symmetric Spaces and the Kashiwara-Vergne Method by
Cover of the book Natural Polymers by
Cover of the book Modern Luminescence Spectroscopy of Minerals and Materials by
Cover of the book Research on Risk Evaluation Methods of Groundwater Bursting from Aquifers Underlying Coal Seams and Applications to Coalfields of North China by
Cover of the book Modelling and Observation of Exhaust Gas Concentrations for Diesel Engine Control by
Cover of the book Professional Identities in Initial Teacher Education by
Cover of the book Spatial Temporal Patterns for Action-Oriented Perception in Roving Robots II by
Cover of the book A Clinician's Guide to Pemphigus Vulgaris by
Cover of the book Design and Computation of Modern Engineering Materials by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy