Fractal Solutions for Understanding Complex Systems in Earth Sciences

Nonfiction, Science & Nature, Science, Earth Sciences, Geophysics, Mathematics, Geometry
Cover of the book Fractal Solutions for Understanding Complex Systems in Earth Sciences by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319246758
Publisher: Springer International Publishing Publication: November 21, 2015
Imprint: Springer Language: English
Author:
ISBN: 9783319246758
Publisher: Springer International Publishing
Publication: November 21, 2015
Imprint: Springer
Language: English

This book deals with fractals in understanding problems encountered in earth science, and their solutions. It starts with an analysis of two classes of methods (homogeneous fractals random models, and homogeneous source distributions or “one point” distributions) widely diffused in the geophysical community, especially for studying potential fields and their related source distributions. Subsequently, the use of fractals in potential fields is described by scaling spectral methods for estimation of curie depth. The book also presents an update of the use of the fractal concepts in geological understanding of faults and their significance in geological modelling of hydrocarbon reservoirs. Geophysical well log data provide a unique description of the subsurface lithology; here, the Detrended Fluctuation Analysis technique is presented in case studies located off the west-coast of India. Another important topic is the fractal model of continuum percolation which quantitatively reproduce the flow path geometry by applying the Poiseuille’s equation. The pattern of fracture heterogeneity in reservoir scale of natural geological formations can be viewed as spatially distributed self-similar tree structures; here, the authors present simple analytical models based on the medium structural characteristics to explain the flow in natural fractures. The Fractal Differential Adjacent Segregation (F-DAS) is an unconventional approach for fractal dimension estimation using a box count method. The present analysis provides a better understanding of variability of the system (adsorbents – adsorbate interactions). Towards the end of book, the authors discuss multi-fractal scaling properties of seismograms in order to quantify the complexity associated with high-frequency seismic signals. Finally, the book presents a review on fractal methods applied to fire point processes and satellite time-continuous signals that are sensitive to fire occurrences.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book deals with fractals in understanding problems encountered in earth science, and their solutions. It starts with an analysis of two classes of methods (homogeneous fractals random models, and homogeneous source distributions or “one point” distributions) widely diffused in the geophysical community, especially for studying potential fields and their related source distributions. Subsequently, the use of fractals in potential fields is described by scaling spectral methods for estimation of curie depth. The book also presents an update of the use of the fractal concepts in geological understanding of faults and their significance in geological modelling of hydrocarbon reservoirs. Geophysical well log data provide a unique description of the subsurface lithology; here, the Detrended Fluctuation Analysis technique is presented in case studies located off the west-coast of India. Another important topic is the fractal model of continuum percolation which quantitatively reproduce the flow path geometry by applying the Poiseuille’s equation. The pattern of fracture heterogeneity in reservoir scale of natural geological formations can be viewed as spatially distributed self-similar tree structures; here, the authors present simple analytical models based on the medium structural characteristics to explain the flow in natural fractures. The Fractal Differential Adjacent Segregation (F-DAS) is an unconventional approach for fractal dimension estimation using a box count method. The present analysis provides a better understanding of variability of the system (adsorbents – adsorbate interactions). Towards the end of book, the authors discuss multi-fractal scaling properties of seismograms in order to quantify the complexity associated with high-frequency seismic signals. Finally, the book presents a review on fractal methods applied to fire point processes and satellite time-continuous signals that are sensitive to fire occurrences.

More books from Springer International Publishing

Cover of the book Computer Safety, Reliability, and Security by
Cover of the book Properties of Fresh and Hardened Concrete Containing Supplementary Cementitious Materials by
Cover of the book Modelling and Observation of Exhaust Gas Concentrations for Diesel Engine Control by
Cover of the book Metabolic Disorders and Critically Ill Patients by
Cover of the book Asteroseismology of Stellar Populations in the Milky Way by
Cover of the book Yeasts in Natural Ecosystems: Diversity by
Cover of the book Basic Concepts in Nuclear Physics: Theory, Experiments and Applications by
Cover of the book Membrane Proteins in Aqueous Solutions by
Cover of the book Filtering and Control of Stochastic Jump Hybrid Systems by
Cover of the book Educational Technologies in Medical and Health Sciences Education by
Cover of the book From Financial Crisis to Social Change by
Cover of the book Mobile Networks and Management by
Cover of the book Smart Multimedia by
Cover of the book Mediterranean Cities and Island Communities by
Cover of the book Corporal Punishment, Religion, and United States Public Schools by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy