Fundamentals of Neuromechanics

Nonfiction, Science & Nature, Technology, Automation, Computers
Cover of the book Fundamentals of Neuromechanics by Francisco J. Valero-Cuevas, Springer London
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Francisco J. Valero-Cuevas ISBN: 9781447167471
Publisher: Springer London Publication: September 7, 2015
Imprint: Springer Language: English
Author: Francisco J. Valero-Cuevas
ISBN: 9781447167471
Publisher: Springer London
Publication: September 7, 2015
Imprint: Springer
Language: English

This book provides a conceptual and computational framework to study how the nervous system exploits the anatomical properties of limbs to produce mechanical function. The study of the neural control of limbs has historically emphasized the use of optimization to find solutions to the muscle redundancy problem. That is, how does the nervous system select a specific muscle coordination pattern when the many muscles of a limb allow for multiple solutions?
I revisit this problem from the emerging perspective of neuromechanics that emphasizes finding and implementing families of feasible solutions, instead of a single and unique optimal solution. Those families of feasible solutions emerge naturally from the interactions among the feasible neural commands, anatomy of the limb, and constraints of the task. Such alternative perspective to the neural control of limb function is not only biologically plausible, but sheds light on the most central tenets and debates in the fields of neural control, robotics, rehabilitation, and brain-body co-evolutionary adaptations. This perspective developed from courses I taught to engineers and life scientists at Cornell University and the University of Southern California, and is made possible by combining fundamental concepts from mechanics, anatomy, mathematics, robotics and neuroscience with advances in the field of computational geometry.
Fundamentals of Neuromechanics is intended for neuroscientists, roboticists, engineers, physicians, evolutionary biologists, athletes, and physical and occupational therapists seeking to advance their understanding of neuromechanics. Therefore, the tone is decidedly pedagogical, engaging, integrative, and practical to make it accessible to people coming from a broad spectrum of disciplines. I attempt to tread the line between making the mathematical exposition accessible to life scientists, and convey the wonder and complexity of neuroscience to engineers and computational scientists. While no one approach can hope to definitively resolve the important questions in these related fields, I hope to provide you with the fundamental background and tools to allow you to contribute to the emerging field of neuromechanics.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book provides a conceptual and computational framework to study how the nervous system exploits the anatomical properties of limbs to produce mechanical function. The study of the neural control of limbs has historically emphasized the use of optimization to find solutions to the muscle redundancy problem. That is, how does the nervous system select a specific muscle coordination pattern when the many muscles of a limb allow for multiple solutions?
I revisit this problem from the emerging perspective of neuromechanics that emphasizes finding and implementing families of feasible solutions, instead of a single and unique optimal solution. Those families of feasible solutions emerge naturally from the interactions among the feasible neural commands, anatomy of the limb, and constraints of the task. Such alternative perspective to the neural control of limb function is not only biologically plausible, but sheds light on the most central tenets and debates in the fields of neural control, robotics, rehabilitation, and brain-body co-evolutionary adaptations. This perspective developed from courses I taught to engineers and life scientists at Cornell University and the University of Southern California, and is made possible by combining fundamental concepts from mechanics, anatomy, mathematics, robotics and neuroscience with advances in the field of computational geometry.
Fundamentals of Neuromechanics is intended for neuroscientists, roboticists, engineers, physicians, evolutionary biologists, athletes, and physical and occupational therapists seeking to advance their understanding of neuromechanics. Therefore, the tone is decidedly pedagogical, engaging, integrative, and practical to make it accessible to people coming from a broad spectrum of disciplines. I attempt to tread the line between making the mathematical exposition accessible to life scientists, and convey the wonder and complexity of neuroscience to engineers and computational scientists. While no one approach can hope to definitively resolve the important questions in these related fields, I hope to provide you with the fundamental background and tools to allow you to contribute to the emerging field of neuromechanics.

More books from Springer London

Cover of the book Distributed-Order Dynamic Systems by Francisco J. Valero-Cuevas
Cover of the book Greening Airports by Francisco J. Valero-Cuevas
Cover of the book Multidisciplinary Care of Urinary Incontinence by Francisco J. Valero-Cuevas
Cover of the book Decision-Based Design by Francisco J. Valero-Cuevas
Cover of the book Introduction to Biopsy Interpretation and Surgical Pathology by Francisco J. Valero-Cuevas
Cover of the book Dynamic Thermal Analysis of Machines in Running State by Francisco J. Valero-Cuevas
Cover of the book An Atlas of Radioscopic Catheter Placement for the Electrophysiologist by Francisco J. Valero-Cuevas
Cover of the book Cooperative Work and Coordinative Practices by Francisco J. Valero-Cuevas
Cover of the book Finitely Generated Abelian Groups and Similarity of Matrices over a Field by Francisco J. Valero-Cuevas
Cover of the book The Physiology of the Lower Urinary Tract by Francisco J. Valero-Cuevas
Cover of the book Medical Applications of Microcomputers by Francisco J. Valero-Cuevas
Cover of the book Cutaneous Drug Eruptions by Francisco J. Valero-Cuevas
Cover of the book Gestational Diabetes During and After Pregnancy by Francisco J. Valero-Cuevas
Cover of the book Energy-Based Economic Development by Francisco J. Valero-Cuevas
Cover of the book Low-cost Nanomaterials by Francisco J. Valero-Cuevas
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy