Fundamentals of Neuromechanics

Nonfiction, Science & Nature, Technology, Automation, Computers
Cover of the book Fundamentals of Neuromechanics by Francisco J. Valero-Cuevas, Springer London
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Francisco J. Valero-Cuevas ISBN: 9781447167471
Publisher: Springer London Publication: September 7, 2015
Imprint: Springer Language: English
Author: Francisco J. Valero-Cuevas
ISBN: 9781447167471
Publisher: Springer London
Publication: September 7, 2015
Imprint: Springer
Language: English

This book provides a conceptual and computational framework to study how the nervous system exploits the anatomical properties of limbs to produce mechanical function. The study of the neural control of limbs has historically emphasized the use of optimization to find solutions to the muscle redundancy problem. That is, how does the nervous system select a specific muscle coordination pattern when the many muscles of a limb allow for multiple solutions?
I revisit this problem from the emerging perspective of neuromechanics that emphasizes finding and implementing families of feasible solutions, instead of a single and unique optimal solution. Those families of feasible solutions emerge naturally from the interactions among the feasible neural commands, anatomy of the limb, and constraints of the task. Such alternative perspective to the neural control of limb function is not only biologically plausible, but sheds light on the most central tenets and debates in the fields of neural control, robotics, rehabilitation, and brain-body co-evolutionary adaptations. This perspective developed from courses I taught to engineers and life scientists at Cornell University and the University of Southern California, and is made possible by combining fundamental concepts from mechanics, anatomy, mathematics, robotics and neuroscience with advances in the field of computational geometry.
Fundamentals of Neuromechanics is intended for neuroscientists, roboticists, engineers, physicians, evolutionary biologists, athletes, and physical and occupational therapists seeking to advance their understanding of neuromechanics. Therefore, the tone is decidedly pedagogical, engaging, integrative, and practical to make it accessible to people coming from a broad spectrum of disciplines. I attempt to tread the line between making the mathematical exposition accessible to life scientists, and convey the wonder and complexity of neuroscience to engineers and computational scientists. While no one approach can hope to definitively resolve the important questions in these related fields, I hope to provide you with the fundamental background and tools to allow you to contribute to the emerging field of neuromechanics.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book provides a conceptual and computational framework to study how the nervous system exploits the anatomical properties of limbs to produce mechanical function. The study of the neural control of limbs has historically emphasized the use of optimization to find solutions to the muscle redundancy problem. That is, how does the nervous system select a specific muscle coordination pattern when the many muscles of a limb allow for multiple solutions?
I revisit this problem from the emerging perspective of neuromechanics that emphasizes finding and implementing families of feasible solutions, instead of a single and unique optimal solution. Those families of feasible solutions emerge naturally from the interactions among the feasible neural commands, anatomy of the limb, and constraints of the task. Such alternative perspective to the neural control of limb function is not only biologically plausible, but sheds light on the most central tenets and debates in the fields of neural control, robotics, rehabilitation, and brain-body co-evolutionary adaptations. This perspective developed from courses I taught to engineers and life scientists at Cornell University and the University of Southern California, and is made possible by combining fundamental concepts from mechanics, anatomy, mathematics, robotics and neuroscience with advances in the field of computational geometry.
Fundamentals of Neuromechanics is intended for neuroscientists, roboticists, engineers, physicians, evolutionary biologists, athletes, and physical and occupational therapists seeking to advance their understanding of neuromechanics. Therefore, the tone is decidedly pedagogical, engaging, integrative, and practical to make it accessible to people coming from a broad spectrum of disciplines. I attempt to tread the line between making the mathematical exposition accessible to life scientists, and convey the wonder and complexity of neuroscience to engineers and computational scientists. While no one approach can hope to definitively resolve the important questions in these related fields, I hope to provide you with the fundamental background and tools to allow you to contribute to the emerging field of neuromechanics.

More books from Springer London

Cover of the book Engineering Asset Management and Infrastructure Sustainability by Francisco J. Valero-Cuevas
Cover of the book Evolutionary Web Development by Francisco J. Valero-Cuevas
Cover of the book Model-based Fault Diagnosis in Dynamic Systems Using Identification Techniques by Francisco J. Valero-Cuevas
Cover of the book Textbook of Neurointensive Care by Francisco J. Valero-Cuevas
Cover of the book Modern Solid Waste Management in Practice by Francisco J. Valero-Cuevas
Cover of the book Anterior Knee Pain and Patellar Instability by Francisco J. Valero-Cuevas
Cover of the book Neurodegenerative Diseases by Francisco J. Valero-Cuevas
Cover of the book Treatment of Multiple Sclerosis by Francisco J. Valero-Cuevas
Cover of the book Pediatric Surgery by Francisco J. Valero-Cuevas
Cover of the book Concise Guide to Databases by Francisco J. Valero-Cuevas
Cover of the book Pulmonary Function Tests in Clinical Practice by Francisco J. Valero-Cuevas
Cover of the book Managing Software Quality by Francisco J. Valero-Cuevas
Cover of the book Light-Based Therapies for Skin of Color by Francisco J. Valero-Cuevas
Cover of the book Common Eye Diseases and their Management by Francisco J. Valero-Cuevas
Cover of the book Power Electronic Converters Modeling and Control by Francisco J. Valero-Cuevas
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy