Gene and Cell Therapies for Beta-Globinopathies

Nonfiction, Science & Nature, Science, Other Sciences, Molecular Biology, Health & Well Being, Medical, Medical Science, Genetics
Cover of the book Gene and Cell Therapies for Beta-Globinopathies by , Springer New York
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9781493972999
Publisher: Springer New York Publication: November 9, 2017
Imprint: Springer Language: English
Author:
ISBN: 9781493972999
Publisher: Springer New York
Publication: November 9, 2017
Imprint: Springer
Language: English

Hemoglobin defects, specifically sickle cell disease & thalassemia, combined, constitute the most common monogenic disorders in the world. In fact, nearly 2% of the world’s population carries a globin gene mutation. The transfer of the corrective globin gene through the HSC compartment by allogeneic HSC transplantation (HSCT) has already proven curative in both SCD and thalassemia patients, and provides the proof of concept that genetic manipulation of the defective organ might be equally therapeutic. However, procedural toxicities and the requirement of an HLA-matched sibling donor limit this approach to a fraction of affected individuals. The editors review the progress & the state of the field in HSCT for hemoglobinopathies & shed light on the major changes expected in the next decade. Although allogeneic HSCT is a curative option, it is limited by the availability of matched donors, which are often available only to 15-20% of patients. An alternative to allogeneic HS

CT is genetic correction of autologous HSCs, to overcome donor availability & immune side effects. This Book reviews the progress made on additive gene therapy approaches & the current state of the field. Finally, targeted genetic correction is emerging as a novel therapeutic strategy in the hemoglobinopathies. Although ideal, the inefficiency of targeted correction was rate limiting for translation of this technology to the clinic. With advancements in zinc finger nucleases and TALE endonuclease mediated targeted correction, correction frequencies in hematopoietic stem cells is now reaching levels that may become clinically relevant. Furthermore, the ability to generate autologous embryonic stem cell like cells from primary somatic cells (skin fibroblasts or hematopoietic cells) of the affected individual has allowed for the potential application of genetic correction strategies.This Book reviews upcoming genetic strategies to reactivate fetal hemoglobin production and research advances.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Hemoglobin defects, specifically sickle cell disease & thalassemia, combined, constitute the most common monogenic disorders in the world. In fact, nearly 2% of the world’s population carries a globin gene mutation. The transfer of the corrective globin gene through the HSC compartment by allogeneic HSC transplantation (HSCT) has already proven curative in both SCD and thalassemia patients, and provides the proof of concept that genetic manipulation of the defective organ might be equally therapeutic. However, procedural toxicities and the requirement of an HLA-matched sibling donor limit this approach to a fraction of affected individuals. The editors review the progress & the state of the field in HSCT for hemoglobinopathies & shed light on the major changes expected in the next decade. Although allogeneic HSCT is a curative option, it is limited by the availability of matched donors, which are often available only to 15-20% of patients. An alternative to allogeneic HS

CT is genetic correction of autologous HSCs, to overcome donor availability & immune side effects. This Book reviews the progress made on additive gene therapy approaches & the current state of the field. Finally, targeted genetic correction is emerging as a novel therapeutic strategy in the hemoglobinopathies. Although ideal, the inefficiency of targeted correction was rate limiting for translation of this technology to the clinic. With advancements in zinc finger nucleases and TALE endonuclease mediated targeted correction, correction frequencies in hematopoietic stem cells is now reaching levels that may become clinically relevant. Furthermore, the ability to generate autologous embryonic stem cell like cells from primary somatic cells (skin fibroblasts or hematopoietic cells) of the affected individual has allowed for the potential application of genetic correction strategies.This Book reviews upcoming genetic strategies to reactivate fetal hemoglobin production and research advances.

More books from Springer New York

Cover of the book Sonocrystallization of Fats by
Cover of the book Plastid Biology by
Cover of the book Atlas of Mediastinal Pathology by
Cover of the book Data Correcting Approaches in Combinatorial Optimization by
Cover of the book Management of Functional Gastrointestinal Disorders in Children by
Cover of the book High Performance Memory Systems by
Cover of the book Prevention Science in School Settings by
Cover of the book Pharmaceutical Microscopy by
Cover of the book Spectral and Dynamical Stability of Nonlinear Waves by
Cover of the book Oceanography by
Cover of the book Parent-Teen Communication by
Cover of the book The Business of Bioscience by
Cover of the book Tracking the Neolithic House in Europe by
Cover of the book Designing 2D and 3D Network-on-Chip Architectures by
Cover of the book Interoperable Electronic Safety Equipment by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy