Geothermal Technologies Market Report: Department of Energy Report on the Status of Geothermal Power, Investment, American Activity, Leasing and Permitting, Employment and Economic Benefits

Nonfiction, Science & Nature, Science, Physics, Energy
Cover of the book Geothermal Technologies Market Report: Department of Energy Report on the Status of Geothermal Power, Investment, American Activity, Leasing and Permitting, Employment and Economic Benefits by Progressive Management, Progressive Management
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Progressive Management ISBN: 9781465992956
Publisher: Progressive Management Publication: March 7, 2012
Imprint: Smashwords Edition Language: English
Author: Progressive Management
ISBN: 9781465992956
Publisher: Progressive Management
Publication: March 7, 2012
Imprint: Smashwords Edition
Language: English

This Department of Energy (DOE) report on the market for geothermal power technologies has been converted for accurate flowing-text ebook format reproduction. While geothermal energy technology has been in development in the United States for over 100 years, national interest in geothermal recently gained momentum as the result of new analysis that suggests massive electricity producing potential. The geothermal industry has also seen unprecedented investment growth following the transition to a new administration and its response to the economic climate through the American Recovery and Reinvestment Act of 2009 (the Recovery Act). While it tends to have a lower profile among the nation's renewable energy resources, geothermal is currently in the midst of a renaissance. In such a rapidly changing market, this report bears particular significance.

Geothermal energy technologies can be broken into four major categories: conventional hydrothermal, low-temperature, EGS, and direct use, including geothermal heat pumps (GHPs). The first three categories generate electricity, while the fourth is used primarily for heating and cooling and hot water production. This report will consider electricity generation technologies separately from direct use technologies due to differences in technology maturity and market characteristics.
This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the GTP's involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including GHPs.** The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

Contents: Investment * State of Power Generation & Current Activity in the U.S. * Cost of Development, Operation and Maintenance * National Policy, Geothermal Leasing and Permitting * Direct-Use and GHPs * International Activities * Employment and Economic Benefits of Geothermal Power * Looking Ahead - 2009 and Beyond

Geothermal energy is a domestic energy source. Clearly, geothermal energy can greatly contribute to the nation's energy mix. It is clean and available 24 hours a day. The United States has an estimated 2800 MW of geothermal installed capacity; worldwide, the figure is 8000 MW. The U.S. Geological Survey estimated in 1979 that the hydrothermal geothermal power potential in the United States was approximately 23,000 MW. In addition, thousands of installations are using geothermal energy for agriculture, aquaculture, district heating and cooling, and other direct uses. This estimate of geothermal potential could be even higher. Using geothermal energy reduces our dependence on imported fuels, creates jobs in the United States, and more favorably balances the U.S. global trading position. Geothermal energy has environmental benefits. Electricity produced from geothermal resources in the United States prevents the emission of 22 million tons of carbon dioxide, 200,000 tons of sulfur dioxide, 80,000 tons of nitrogen oxides, and 110,000 tons of particulate matter every year compared to conventional coal-fired power plants. A geothermal binary power plant, operating with a closed system, emits virtually nothing to the atmosphere. Technologies have been developed to recycle minerals contained in geothermal fluid so that little or no disposal or emissions occur.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This Department of Energy (DOE) report on the market for geothermal power technologies has been converted for accurate flowing-text ebook format reproduction. While geothermal energy technology has been in development in the United States for over 100 years, national interest in geothermal recently gained momentum as the result of new analysis that suggests massive electricity producing potential. The geothermal industry has also seen unprecedented investment growth following the transition to a new administration and its response to the economic climate through the American Recovery and Reinvestment Act of 2009 (the Recovery Act). While it tends to have a lower profile among the nation's renewable energy resources, geothermal is currently in the midst of a renaissance. In such a rapidly changing market, this report bears particular significance.

Geothermal energy technologies can be broken into four major categories: conventional hydrothermal, low-temperature, EGS, and direct use, including geothermal heat pumps (GHPs). The first three categories generate electricity, while the fourth is used primarily for heating and cooling and hot water production. This report will consider electricity generation technologies separately from direct use technologies due to differences in technology maturity and market characteristics.
This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the GTP's involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including GHPs.** The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

Contents: Investment * State of Power Generation & Current Activity in the U.S. * Cost of Development, Operation and Maintenance * National Policy, Geothermal Leasing and Permitting * Direct-Use and GHPs * International Activities * Employment and Economic Benefits of Geothermal Power * Looking Ahead - 2009 and Beyond

Geothermal energy is a domestic energy source. Clearly, geothermal energy can greatly contribute to the nation's energy mix. It is clean and available 24 hours a day. The United States has an estimated 2800 MW of geothermal installed capacity; worldwide, the figure is 8000 MW. The U.S. Geological Survey estimated in 1979 that the hydrothermal geothermal power potential in the United States was approximately 23,000 MW. In addition, thousands of installations are using geothermal energy for agriculture, aquaculture, district heating and cooling, and other direct uses. This estimate of geothermal potential could be even higher. Using geothermal energy reduces our dependence on imported fuels, creates jobs in the United States, and more favorably balances the U.S. global trading position. Geothermal energy has environmental benefits. Electricity produced from geothermal resources in the United States prevents the emission of 22 million tons of carbon dioxide, 200,000 tons of sulfur dioxide, 80,000 tons of nitrogen oxides, and 110,000 tons of particulate matter every year compared to conventional coal-fired power plants. A geothermal binary power plant, operating with a closed system, emits virtually nothing to the atmosphere. Technologies have been developed to recycle minerals contained in geothermal fluid so that little or no disposal or emissions occur.

More books from Progressive Management

Cover of the book Clarifying Relationships Between Objectives, Effects, and End States With Illustrations and Lessons from the Vietnam War: Maxwell Taylor, McNamara, von Clausewitz by Progressive Management
Cover of the book Guide to Women in the Military: History, Analysis, Key Issues, Marine Corps Testing, Navy and Women, America's Women Veterans by Progressive Management
Cover of the book Expansion or Marginalization: How Effects-Based Organization Could Determine the Future of Air Force Space Command, Cyber Command, Further Consolidation for Effectiveness, Combat Support Mission by Progressive Management
Cover of the book Solving the Puzzle: Researching the Impacts of Climate Change Around the World - Earth, Sky, Sea, Ice, Land, Life, and People Research Highlights, NASA Antarctic Glacier Loss Study by Progressive Management
Cover of the book NSA Secrets Declassified: Listening to the Rumrunners: Radio Intelligence during Prohibition, Cryptology, Elizebeth Friedman and USCG Thwart Rumrunners, Invisible Cryptologists: African-Americans by Progressive Management
Cover of the book Operational Culture for the Warfighter: Principles and Applications - Physical Environment, Economy, Social Structure, Political Structure, Iraq, Islam, Clausewitz, Wargaming by Progressive Management
Cover of the book U.S. Marines in Humanitarian Operations: A Skillful Show of Strength: U.S. Marines in the Caribbean, 1991-1996 - Gitmo, Guantanamo Bay, Haitian Migrants, Support Democracy by Progressive Management
Cover of the book Like a Thunderbolt: The Lafayette Escadrille and the Advent of American Pursuit in World War I - Sopwith Camel, American Pilots, Aces, William Thaw, Foulois by Progressive Management
Cover of the book Pakistan: Federal Research Study and Country Profile with Comprehensive Information, History, and Analysis - Politics, Economy, Military, Islamabad by Progressive Management
Cover of the book Art of War Paper: Operations at the Border - Efforts to Disrupt Insurgent Safe-Havens, Dhofar, Oman, Insurgency, Counterinsurgency by Progressive Management
Cover of the book Project Mercury: A Chronology - A History of America's First Manned Spacecraft for the Shepard, Grissom, Glenn, Carpenter, Schirra, Cooper Flights (NASA SP-4001) by Progressive Management
Cover of the book 21st Century Geothermal Energy: A History of Geothermal Energy Research and Development in the United States - Volume 1 - Exploration 1976-2006 by Progressive Management
Cover of the book The War in South Vietnam: The Years of the Offensive 1965-1968 - The United States Air Force in Southeast Asia - B-52 Bomber, Deployments and Air Operations, Refinements of Aircraft and Munitions by Progressive Management
Cover of the book Oil for the Lamps of China: Beijing's 21st-Century Search for Energy: Coal, Oil, Natural Gas, Power Distribution System, Environment, Defense, Nuclear, Renewable, Solar, Wind, Geothermal by Progressive Management
Cover of the book World War II: The European Campaign: Its Origins and Conduct, D-Day Planning and Execution, Operations Cobra and Market Garden, Hurtgen Campaign, Ardennes Offensive, Ruhr or Berlin by Progressive Management
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy