Author: | Jean-Marc Spaggiari, Mladen Kovacevic, Brock Noland, Ryan Bosshart | ISBN: | 9781491980200 |
Publisher: | O'Reilly Media | Publication: | July 9, 2018 |
Imprint: | O'Reilly Media | Language: | English |
Author: | Jean-Marc Spaggiari, Mladen Kovacevic, Brock Noland, Ryan Bosshart |
ISBN: | 9781491980200 |
Publisher: | O'Reilly Media |
Publication: | July 9, 2018 |
Imprint: | O'Reilly Media |
Language: | English |
Fast data ingestion, serving, and analytics in the Hadoop ecosystem have forced developers and architects to choose solutions using the least common denominator—either fast analytics at the cost of slow data ingestion or fast data ingestion at the cost of slow analytics. There is an answer to this problem. With the Apache Kudu column-oriented data store, you can easily perform fast analytics on fast data. This practical guide shows you how.
Begun as an internal project at Cloudera, Kudu is an open source solution compatible with many data processing frameworks in the Hadoop environment. In this book, current and former solutions professionals from Cloudera provide use cases, examples, best practices, and sample code to help you get up to speed with Kudu.
Fast data ingestion, serving, and analytics in the Hadoop ecosystem have forced developers and architects to choose solutions using the least common denominator—either fast analytics at the cost of slow data ingestion or fast data ingestion at the cost of slow analytics. There is an answer to this problem. With the Apache Kudu column-oriented data store, you can easily perform fast analytics on fast data. This practical guide shows you how.
Begun as an internal project at Cloudera, Kudu is an open source solution compatible with many data processing frameworks in the Hadoop environment. In this book, current and former solutions professionals from Cloudera provide use cases, examples, best practices, and sample code to help you get up to speed with Kudu.