Author: | Vitor Bianchi Lanzetta, Nataraj Dasgupta, Ricardo Anjoleto Farias | ISBN: | 9781789135831 |
Publisher: | Packt Publishing | Publication: | November 30, 2018 |
Imprint: | Packt Publishing | Language: | English |
Author: | Vitor Bianchi Lanzetta, Nataraj Dasgupta, Ricardo Anjoleto Farias |
ISBN: | 9781789135831 |
Publisher: | Packt Publishing |
Publication: | November 30, 2018 |
Imprint: | Packt Publishing |
Language: | English |
A hands-on guide for professionals to perform various data science tasks in R
R is the most widely used programming language, and when used in association with data science, this powerful combination will solve the complexities involved with unstructured datasets in the real world. This book covers the entire data science ecosystem for aspiring data scientists, right from zero to a level where you are confident enough to get hands-on with real-world data science problems.
The book starts with an introduction to data science and introduces readers to popular R libraries for executing data science routine tasks. This book covers all the important processes in data science such as data gathering, cleaning data, and then uncovering patterns from it. You will explore algorithms such as machine learning algorithms, predictive analytical models, and finally deep learning algorithms. You will learn to run the most powerful visualization packages available in R so as to ensure that you can easily derive insights from your data.
Towards the end, you will also learn how to integrate R with Spark and Hadoop and perform large-scale data analytics without much complexity.
If you are a budding data scientist keen to learn about the popular pandas library, or a Python developer looking to step into the world of data analysis, this book is the ideal resource you need to get started. Some programming experience in Python will be helpful to get the most out of this course
A hands-on guide for professionals to perform various data science tasks in R
R is the most widely used programming language, and when used in association with data science, this powerful combination will solve the complexities involved with unstructured datasets in the real world. This book covers the entire data science ecosystem for aspiring data scientists, right from zero to a level where you are confident enough to get hands-on with real-world data science problems.
The book starts with an introduction to data science and introduces readers to popular R libraries for executing data science routine tasks. This book covers all the important processes in data science such as data gathering, cleaning data, and then uncovering patterns from it. You will explore algorithms such as machine learning algorithms, predictive analytical models, and finally deep learning algorithms. You will learn to run the most powerful visualization packages available in R so as to ensure that you can easily derive insights from your data.
Towards the end, you will also learn how to integrate R with Spark and Hadoop and perform large-scale data analytics without much complexity.
If you are a budding data scientist keen to learn about the popular pandas library, or a Python developer looking to step into the world of data analysis, this book is the ideal resource you need to get started. Some programming experience in Python will be helpful to get the most out of this course