Inference for Heavy-Tailed Data

Applications in Insurance and Finance

Nonfiction, Science & Nature, Mathematics, Applied
Cover of the book Inference for Heavy-Tailed Data by Liang Peng, Yongcheng Qi, Elsevier Science
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Liang Peng, Yongcheng Qi ISBN: 9780128047507
Publisher: Elsevier Science Publication: August 11, 2017
Imprint: Academic Press Language: English
Author: Liang Peng, Yongcheng Qi
ISBN: 9780128047507
Publisher: Elsevier Science
Publication: August 11, 2017
Imprint: Academic Press
Language: English

Heavy tailed data appears frequently in social science, internet traffic, insurance and finance. Statistical inference has been studied for many years, which includes recent bias-reduction estimation for tail index and high quantiles with applications in risk management, empirical likelihood based interval estimation for tail index and high quantiles, hypothesis tests for heavy tails, the choice of sample fraction in tail index and high quantile inference. These results for independent data, dependent data, linear time series and nonlinear time series are scattered in different statistics journals. Inference for Heavy-Tailed Data Analysis puts these methods into a single place with a clear picture on learning and using these techniques.

  • Contains comprehensive coverage of new techniques of heavy tailed data analysis
  • Provides examples of heavy tailed data and its uses
  • Brings together, in a single place, a clear picture on learning and using these techniques
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Heavy tailed data appears frequently in social science, internet traffic, insurance and finance. Statistical inference has been studied for many years, which includes recent bias-reduction estimation for tail index and high quantiles with applications in risk management, empirical likelihood based interval estimation for tail index and high quantiles, hypothesis tests for heavy tails, the choice of sample fraction in tail index and high quantile inference. These results for independent data, dependent data, linear time series and nonlinear time series are scattered in different statistics journals. Inference for Heavy-Tailed Data Analysis puts these methods into a single place with a clear picture on learning and using these techniques.

More books from Elsevier Science

Cover of the book Cathodic Corrosion Protection Systems by Liang Peng, Yongcheng Qi
Cover of the book The MBR Book by Liang Peng, Yongcheng Qi
Cover of the book Non-Executive Director's Handbook by Liang Peng, Yongcheng Qi
Cover of the book Risk and Return for Regulated Industries by Liang Peng, Yongcheng Qi
Cover of the book A New Look at Mechanisms in Bioenergetics by Liang Peng, Yongcheng Qi
Cover of the book Security Leader Insights for Information Protection by Liang Peng, Yongcheng Qi
Cover of the book Encapsulations by Liang Peng, Yongcheng Qi
Cover of the book Fundamentals of Interface and Colloid Science by Liang Peng, Yongcheng Qi
Cover of the book Advances in Renewable Energies and Power Technologies by Liang Peng, Yongcheng Qi
Cover of the book Differential Quadrature and Differential Quadrature Based Element Methods by Liang Peng, Yongcheng Qi
Cover of the book Online Learning and its Users by Liang Peng, Yongcheng Qi
Cover of the book Cardiovascular Diseases by Liang Peng, Yongcheng Qi
Cover of the book Bio-Geotechnologies for Mine Site Rehabilitation by Liang Peng, Yongcheng Qi
Cover of the book Competitive Intelligence for Information Professionals by Liang Peng, Yongcheng Qi
Cover of the book Mathematical Concepts and Methods in Modern Biology by Liang Peng, Yongcheng Qi
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy