Intangible Life

Functorial Connections in Relational Biology

Nonfiction, Religion & Spirituality, Philosophy, Reference, Science & Nature, Mathematics, Applied, Science
Cover of the book Intangible Life by A.H. Louie, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: A.H. Louie ISBN: 9783319654096
Publisher: Springer International Publishing Publication: December 5, 2017
Imprint: Springer Language: English
Author: A.H. Louie
ISBN: 9783319654096
Publisher: Springer International Publishing
Publication: December 5, 2017
Imprint: Springer
Language: English

This rare publication continues an exploratory journey in relational biology, a study of biology in terms of the organization of networked connections in living systems. It builds on the author’s two earlier monographs which looked at the epistemology of life and the ontogeny of life. Here the emphasis is on the intangibility of life, that the real nature of living systems is conveyed not by their tangible material basis but by their intangible inherent processes. 

 

Relational biology is the approach that hails ‘function dictates structure’; it is mathematics decoded into biological realizations. Therefore, the work begins with a concise introduction to category theory, equiping the reader with the mathematical metalanguage of relation biology. The book is organized around three parts:

 

Part I is a comprehensive study of the most important functor in relational biology, the power set functor.  The author lays the s

et-theoretic foundations of the functorial connections in relational biology, exploring relations, mappings, and set-valued mappings.

 

In Part II, Natural Law receives a new mathematical formulation founded on two axioms: ‘Everything is a set.’ and ‘Every process is a set-valued mapping.’ The reader sees how Metabolism–Repair networks, equipped with set-valued processors, expand their role from models of biological entities to generic models of all natural systems.  

 

Part III expounds the various shades of invertibility in general, and the inversion of encoding to decoding in particular.  A plethora of mathematical and biological examples illustrate the category-theoretic concepts of equivalence and adjunction.

 

This book's algebraic approach to biological models will appeal to researchers and graduate students in mathematics, biology, and the philosophy of science.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This rare publication continues an exploratory journey in relational biology, a study of biology in terms of the organization of networked connections in living systems. It builds on the author’s two earlier monographs which looked at the epistemology of life and the ontogeny of life. Here the emphasis is on the intangibility of life, that the real nature of living systems is conveyed not by their tangible material basis but by their intangible inherent processes. 

 

Relational biology is the approach that hails ‘function dictates structure’; it is mathematics decoded into biological realizations. Therefore, the work begins with a concise introduction to category theory, equiping the reader with the mathematical metalanguage of relation biology. The book is organized around three parts:

 

Part I is a comprehensive study of the most important functor in relational biology, the power set functor.  The author lays the s

et-theoretic foundations of the functorial connections in relational biology, exploring relations, mappings, and set-valued mappings.

 

In Part II, Natural Law receives a new mathematical formulation founded on two axioms: ‘Everything is a set.’ and ‘Every process is a set-valued mapping.’ The reader sees how Metabolism–Repair networks, equipped with set-valued processors, expand their role from models of biological entities to generic models of all natural systems.  

 

Part III expounds the various shades of invertibility in general, and the inversion of encoding to decoding in particular.  A plethora of mathematical and biological examples illustrate the category-theoretic concepts of equivalence and adjunction.

 

This book's algebraic approach to biological models will appeal to researchers and graduate students in mathematics, biology, and the philosophy of science.

More books from Springer International Publishing

Cover of the book Algorithmic Aspects of Cloud Computing by A.H. Louie
Cover of the book Archaeoastronomy by A.H. Louie
Cover of the book OpenSHMEM and Related Technologies. Enhancing OpenSHMEM for Hybrid Environments by A.H. Louie
Cover of the book Cryptography and Information Security in the Balkans by A.H. Louie
Cover of the book An Easy Guide to Care for Sculpture and Antique Art Collections by A.H. Louie
Cover of the book Clinical Handbook of Air Pollution-Related Diseases by A.H. Louie
Cover of the book Global Talent Management by A.H. Louie
Cover of the book Cardiac Emergencies in Children by A.H. Louie
Cover of the book Scalable Information Systems by A.H. Louie
Cover of the book Ignition Systems for Gasoline Engines by A.H. Louie
Cover of the book Human Rights Policies in Chile by A.H. Louie
Cover of the book Cyber Weaponry by A.H. Louie
Cover of the book Annual Update in Intensive Care and Emergency Medicine 2016 by A.H. Louie
Cover of the book Practicing Servant Leadership by A.H. Louie
Cover of the book The EU’s Neighbourhood Policy towards the South Caucasus by A.H. Louie
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy