Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods

Nonfiction, Science & Nature, Technology, Engineering, Civil
Cover of the book Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods by Victor N. Kaliakin, CRC Press
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Victor N. Kaliakin ISBN: 9781351990905
Publisher: CRC Press Publication: April 19, 2018
Imprint: CRC Press Language: English
Author: Victor N. Kaliakin
ISBN: 9781351990905
Publisher: CRC Press
Publication: April 19, 2018
Imprint: CRC Press
Language: English

Functions as a self-study guide for engineers and as a textbook for nonengineering students and engineering students, emphasizing generic forms of differential equations, applying approximate solution techniques to examples, and progressing to specific physical problems in modular, self-contained chapters that integrate into the text or can stand alone!

This reference/text focuses on classical approximate solution techniques such as the finite difference method, the method of weighted residuals, and variation methods, culminating in an introduction to the finite element method (FEM).

Discusses the general notion of approximate solutions and associated errors!

With 1500 equations and more than 750 references, drawings, and tables, Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods:

Describes the approximate solution of ordinary and partial differential equations using the finite difference method

Covers the method of weighted residuals, including specific weighting and trial functions

Considers variational methods

Highlights all aspects associated with the formulation of finite element equations

Outlines meshing of the solution domain, nodal specifications, solution of global equations, solution refinement, and assessment of results

Containing appendices that present concise overviews of topics and serve as rudimentary tutorials for professionals and students without a background in computational mechanics, Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods is a blue-chip reference for civil, mechanical, structural, aerospace, and industrial engineers, and a practical text for upper-level undergraduate and graduate students studying approximate solution techniques and the FEM.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Functions as a self-study guide for engineers and as a textbook for nonengineering students and engineering students, emphasizing generic forms of differential equations, applying approximate solution techniques to examples, and progressing to specific physical problems in modular, self-contained chapters that integrate into the text or can stand alone!

This reference/text focuses on classical approximate solution techniques such as the finite difference method, the method of weighted residuals, and variation methods, culminating in an introduction to the finite element method (FEM).

Discusses the general notion of approximate solutions and associated errors!

With 1500 equations and more than 750 references, drawings, and tables, Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods:

Describes the approximate solution of ordinary and partial differential equations using the finite difference method

Covers the method of weighted residuals, including specific weighting and trial functions

Considers variational methods

Highlights all aspects associated with the formulation of finite element equations

Outlines meshing of the solution domain, nodal specifications, solution of global equations, solution refinement, and assessment of results

Containing appendices that present concise overviews of topics and serve as rudimentary tutorials for professionals and students without a background in computational mechanics, Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods is a blue-chip reference for civil, mechanical, structural, aerospace, and industrial engineers, and a practical text for upper-level undergraduate and graduate students studying approximate solution techniques and the FEM.

More books from CRC Press

Cover of the book Enforcing Covenants by Victor N. Kaliakin
Cover of the book Principles of Nuclear Radiation Detection by Victor N. Kaliakin
Cover of the book Introduction To The Theory Of Neural Computation by Victor N. Kaliakin
Cover of the book Advances in Mobile Computing and Communications by Victor N. Kaliakin
Cover of the book Thermal Hydraulic Design of Components for Steam Generation Plants by Victor N. Kaliakin
Cover of the book The Global Human Right to Health by Victor N. Kaliakin
Cover of the book Natural Toxic Compounds of Foods by Victor N. Kaliakin
Cover of the book Biostatistics by Victor N. Kaliakin
Cover of the book A First Course in the Design of Experiments by Victor N. Kaliakin
Cover of the book Experimental Hydraulics: Methods, Instrumentation, Data Processing and Management by Victor N. Kaliakin
Cover of the book Vehicle Electronic Systems and Fault Diagnosis by Victor N. Kaliakin
Cover of the book Nonlinear Dynamics and Chaos with Student Solutions Manual by Victor N. Kaliakin
Cover of the book Human Error in Aviation by Victor N. Kaliakin
Cover of the book Sharpening Your Advanced SAS Skills by Victor N. Kaliakin
Cover of the book Fat Absorption by Victor N. Kaliakin
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy