Introduction to Modeling for Biosciences

Nonfiction, Science & Nature, Mathematics, Applied, Computers, Advanced Computing, Computer Science
Cover of the book Introduction to Modeling for Biosciences by David J. Barnes, Dominique Chu, Springer London
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: David J. Barnes, Dominique Chu ISBN: 9781849963268
Publisher: Springer London Publication: July 23, 2010
Imprint: Springer Language: English
Author: David J. Barnes, Dominique Chu
ISBN: 9781849963268
Publisher: Springer London
Publication: July 23, 2010
Imprint: Springer
Language: English

Mathematical modeling can be a useful tool for researchers in the biological scientists. Yet in biological modeling there is no one modeling technique that is suitable for all problems. Instead, different problems call for different approaches. Furthermore, it can be helpful to analyze the same system using a variety of approaches, to be able to exploit the advantages and drawbacks of each. In practice, it is often unclear which modeling approaches will be most suitable for a particular biological question, a problem which requires researchers to know a reasonable amount about a number of techniques, rather than become experts on a single one. "Introduction to Modeling for Biosciences" addresses this issue by presenting a broad overview of the most important techniques used to model biological systems. In addition to providing an introduction into the use of a wide range of software tools and modeling environments, this helpful text/reference describes the constraints and difficulties that each modeling technique presents in practice, enabling the researcher to quickly determine which software package would be most useful for their particular problem. Topics and features: introduces a basic array of techniques to formulate models of biological systems, and to solve them; intersperses the text with exercises throughout the book; includes practical introductions to the Maxima computer algebra system, the PRISM model checker, and the Repast Simphony agent modeling environment; discusses agent-based models, stochastic modeling techniques, differential equations and Gillespie’s stochastic simulation algorithm; contains appendices on Repast batch running, rules of differentiation and integration, Maxima and PRISM notation, and some additional mathematical concepts; supplies source code for many of the example models discussed, at the associated website http://www.cs.kent.ac.uk/imb/. This unique and practical guide leads the novice modeler through realistic and concrete modeling projects, highlighting and commenting on the process of abstracting the real system into a model. Students and active researchers in the biosciences will also benefit from the discussions of the high-quality, tried-and-tested modeling tools described in the book. Dr. David J. Barnes is a lecturer in computer science at the University of Kent, UK, with a strong background in the teaching of programming. Dr. Dominique Chu is a lecturer in computer science at the University of Kent, UK. He is an internationally recognized expert in agent-based modeling, and has also in-depth research experience in stochastic and differential equation based modeling.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Mathematical modeling can be a useful tool for researchers in the biological scientists. Yet in biological modeling there is no one modeling technique that is suitable for all problems. Instead, different problems call for different approaches. Furthermore, it can be helpful to analyze the same system using a variety of approaches, to be able to exploit the advantages and drawbacks of each. In practice, it is often unclear which modeling approaches will be most suitable for a particular biological question, a problem which requires researchers to know a reasonable amount about a number of techniques, rather than become experts on a single one. "Introduction to Modeling for Biosciences" addresses this issue by presenting a broad overview of the most important techniques used to model biological systems. In addition to providing an introduction into the use of a wide range of software tools and modeling environments, this helpful text/reference describes the constraints and difficulties that each modeling technique presents in practice, enabling the researcher to quickly determine which software package would be most useful for their particular problem. Topics and features: introduces a basic array of techniques to formulate models of biological systems, and to solve them; intersperses the text with exercises throughout the book; includes practical introductions to the Maxima computer algebra system, the PRISM model checker, and the Repast Simphony agent modeling environment; discusses agent-based models, stochastic modeling techniques, differential equations and Gillespie’s stochastic simulation algorithm; contains appendices on Repast batch running, rules of differentiation and integration, Maxima and PRISM notation, and some additional mathematical concepts; supplies source code for many of the example models discussed, at the associated website http://www.cs.kent.ac.uk/imb/. This unique and practical guide leads the novice modeler through realistic and concrete modeling projects, highlighting and commenting on the process of abstracting the real system into a model. Students and active researchers in the biosciences will also benefit from the discussions of the high-quality, tried-and-tested modeling tools described in the book. Dr. David J. Barnes is a lecturer in computer science at the University of Kent, UK, with a strong background in the teaching of programming. Dr. Dominique Chu is a lecturer in computer science at the University of Kent, UK. He is an internationally recognized expert in agent-based modeling, and has also in-depth research experience in stochastic and differential equation based modeling.

More books from Springer London

Cover of the book Iterative Learning Control for Electrical Stimulation and Stroke Rehabilitation by David J. Barnes, Dominique Chu
Cover of the book Teleneurology by Internet and Telephone by David J. Barnes, Dominique Chu
Cover of the book CIRP Design 2012 by David J. Barnes, Dominique Chu
Cover of the book Finite-Time Stability and Control by David J. Barnes, Dominique Chu
Cover of the book Pharmacological Treatment of Acute Coronary Syndromes by David J. Barnes, Dominique Chu
Cover of the book Decentralized Reasoning in Ambient Intelligence by David J. Barnes, Dominique Chu
Cover of the book Basic Sciences for Obstetrics and Gynaecology by David J. Barnes, Dominique Chu
Cover of the book Automatic Digital Document Processing and Management by David J. Barnes, Dominique Chu
Cover of the book Multimedia Interaction and Intelligent User Interfaces by David J. Barnes, Dominique Chu
Cover of the book Essential Visual J++ 6.0 fast by David J. Barnes, Dominique Chu
Cover of the book Ear, Nose and Throat Disease by David J. Barnes, Dominique Chu
Cover of the book Beyond World-Class Productivity by David J. Barnes, Dominique Chu
Cover of the book Disorders of Thrombosis and Hemostasis in Pregnancy by David J. Barnes, Dominique Chu
Cover of the book Understanding Virtual Design Studios by David J. Barnes, Dominique Chu
Cover of the book Pediatric Heart Sounds by David J. Barnes, Dominique Chu
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy