Lattice Boltzmann Methods for Shallow Water Flows

Nonfiction, Science & Nature, Science, Earth Sciences, Geophysics
Cover of the book Lattice Boltzmann Methods for Shallow Water Flows by Jian Guo Zhou, Springer Berlin Heidelberg
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Jian Guo Zhou ISBN: 9783662082768
Publisher: Springer Berlin Heidelberg Publication: March 14, 2013
Imprint: Springer Language: English
Author: Jian Guo Zhou
ISBN: 9783662082768
Publisher: Springer Berlin Heidelberg
Publication: March 14, 2013
Imprint: Springer
Language: English

The lattice Boltzmann method (LBM) is a modern numerical technique, very efficient, flexible to simulate different flows within complex/varying geome­ tries. It is evolved from the lattice gas automata (LGA) in order to overcome the difficulties with the LGA. The core equation in the LBM turns out to be a special discrete form of the continuum Boltzmann equation, leading it to be self-explanatory in statistical physics. The method describes the micro­ scopic picture of particles movement in an extremely simplified way, and on the macroscopic level it gives a correct average description of a fluid. The av­ eraged particle velocities behave in time and space just as the flow velocities in a physical fluid, showing a direct link between discrete microscopic and continuum macroscopic phenomena. In contrast to the traditional computational fluid dynamics (CFD) based on a direct solution of flow equations, the lattice Boltzmann method provides an indirect way for solution of the flow equations. The method is characterized by simple calculation, parallel process and easy implementation of boundary conditions. It is these features that make the lattice Boltzmann method a very promising computational method in different areas. In recent years, it receives extensive attentions and becomes a very potential research area in computational fluid dynamics. However, most published books are limited to the lattice Boltzmann methods for the Navier-Stokes equations. On the other hand, shallow water flows exist in many practical situations such as tidal flows, waves, open channel flows and dam-break flows.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The lattice Boltzmann method (LBM) is a modern numerical technique, very efficient, flexible to simulate different flows within complex/varying geome­ tries. It is evolved from the lattice gas automata (LGA) in order to overcome the difficulties with the LGA. The core equation in the LBM turns out to be a special discrete form of the continuum Boltzmann equation, leading it to be self-explanatory in statistical physics. The method describes the micro­ scopic picture of particles movement in an extremely simplified way, and on the macroscopic level it gives a correct average description of a fluid. The av­ eraged particle velocities behave in time and space just as the flow velocities in a physical fluid, showing a direct link between discrete microscopic and continuum macroscopic phenomena. In contrast to the traditional computational fluid dynamics (CFD) based on a direct solution of flow equations, the lattice Boltzmann method provides an indirect way for solution of the flow equations. The method is characterized by simple calculation, parallel process and easy implementation of boundary conditions. It is these features that make the lattice Boltzmann method a very promising computational method in different areas. In recent years, it receives extensive attentions and becomes a very potential research area in computational fluid dynamics. However, most published books are limited to the lattice Boltzmann methods for the Navier-Stokes equations. On the other hand, shallow water flows exist in many practical situations such as tidal flows, waves, open channel flows and dam-break flows.

More books from Springer Berlin Heidelberg

Cover of the book Smart Vehicle Handling - Test und Evaluation in der Fahrzeugtechnik by Jian Guo Zhou
Cover of the book Radiation, Ionization, and Detection in Nuclear Medicine by Jian Guo Zhou
Cover of the book Shock, Sepsis, and Organ Failure by Jian Guo Zhou
Cover of the book Adaptive Digital Filters by Jian Guo Zhou
Cover of the book Wave Dynamics of Generalized Continua by Jian Guo Zhou
Cover of the book Panic and Phobias by Jian Guo Zhou
Cover of the book National Registration for Producers of Electronic Waste by Jian Guo Zhou
Cover of the book Transactions on Edutainment XIV by Jian Guo Zhou
Cover of the book Myocardial Tissue Engineering by Jian Guo Zhou
Cover of the book Advances in CT by Jian Guo Zhou
Cover of the book Kosten- und Leistungsrechnung by Jian Guo Zhou
Cover of the book Progress in Surgical Pathology by Jian Guo Zhou
Cover of the book New Developments in Multiple Objective and Goal Programming by Jian Guo Zhou
Cover of the book Praxishandbuch Nachhaltige Produktentwicklung by Jian Guo Zhou
Cover of the book Renal Pathology in Biopsy by Jian Guo Zhou
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy