Linear and Nonlinear Control of Small-Scale Unmanned Helicopters

Nonfiction, Science & Nature, Technology, Automation, Industrial Design
Cover of the book Linear and Nonlinear Control of Small-Scale Unmanned Helicopters by Kimon P. Valavanis, Ioannis A. Raptis, Springer Netherlands
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Kimon P. Valavanis, Ioannis A. Raptis ISBN: 9789400700239
Publisher: Springer Netherlands Publication: September 28, 2010
Imprint: Springer Language: English
Author: Kimon P. Valavanis, Ioannis A. Raptis
ISBN: 9789400700239
Publisher: Springer Netherlands
Publication: September 28, 2010
Imprint: Springer
Language: English

There has been significant interest for designing flight controllers for small-scale unmanned helicopters. Such helicopters preserve all the physical attributes of their full-scale counterparts, being at the same time more agile and dexterous. This book presents a comprehensive and well justified analysis for designing flight controllers for small-scale unmanned helicopters guarantying flight stability and tracking accuracy. The design of the flight controller is a critical and integral part for developing an autonomous helicopter platform. Helicopters are underactuated, highly nonlinear systems with significant dynamic coupling that needs to be considered and accounted for during controller design and implementation. Most reliable mathematical tools for analysis of control systems relate to modern control theory. Modern control techniques are model-based since the controller architecture depends on the dynamic representation of the system to be controlled. Therefore, the flight controller design problem is tightly connected with the helicopter modeling.

This book provides a step-by-step methodology for designing, evaluating and implementing efficient flight controllers for small-scale helicopters. Design issues that are analytically covered include:

• An illustrative presentation of both linear and nonlinear models of ordinary differential equations representing the helicopter dynamics. A detailed presentation of the helicopter equations of motion is given for the derivation of both model types. In addition, an insightful presentation of the main rotor's mechanism, aerodynamics and dynamics is also provided. Both model types are of low complexity, physically meaningful and capable of encapsulating the dynamic behavior of a large class of small-scale helicopters.

• An illustrative and rigorous derivation of mathematical control algorithms based on both the linear and nonlinear representation of the helicopter dynamics. Flight controller designs guarantee that the tracking objectives of the helicopter's inertial position (or velocity) and heading are achieved. Each controller is carefully constructed by considering the small-scale helicopter's physical flight capabilities. Concepts of advanced stability analysis are used to improve the efficiency and reduce the complexity of the flight control system. Controller designs are derived in both continuous time and discrete time covering discretization issues, which emerge from the implementation of the control algorithm using microprocessors.

• Presentation of the most powerful, practical and efficient methods for extracting the helicopter model parameters based on input/output responses, collected by the measurement instruments. This topic is of particular importance for real-life implementation of the control algorithms.

This book is suitable for students and researches interested in the development and the mathematical derivation of flight controllers for small-scale helicopters. Background knowledge in modern control is required.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

There has been significant interest for designing flight controllers for small-scale unmanned helicopters. Such helicopters preserve all the physical attributes of their full-scale counterparts, being at the same time more agile and dexterous. This book presents a comprehensive and well justified analysis for designing flight controllers for small-scale unmanned helicopters guarantying flight stability and tracking accuracy. The design of the flight controller is a critical and integral part for developing an autonomous helicopter platform. Helicopters are underactuated, highly nonlinear systems with significant dynamic coupling that needs to be considered and accounted for during controller design and implementation. Most reliable mathematical tools for analysis of control systems relate to modern control theory. Modern control techniques are model-based since the controller architecture depends on the dynamic representation of the system to be controlled. Therefore, the flight controller design problem is tightly connected with the helicopter modeling.

This book provides a step-by-step methodology for designing, evaluating and implementing efficient flight controllers for small-scale helicopters. Design issues that are analytically covered include:

• An illustrative presentation of both linear and nonlinear models of ordinary differential equations representing the helicopter dynamics. A detailed presentation of the helicopter equations of motion is given for the derivation of both model types. In addition, an insightful presentation of the main rotor's mechanism, aerodynamics and dynamics is also provided. Both model types are of low complexity, physically meaningful and capable of encapsulating the dynamic behavior of a large class of small-scale helicopters.

• An illustrative and rigorous derivation of mathematical control algorithms based on both the linear and nonlinear representation of the helicopter dynamics. Flight controller designs guarantee that the tracking objectives of the helicopter's inertial position (or velocity) and heading are achieved. Each controller is carefully constructed by considering the small-scale helicopter's physical flight capabilities. Concepts of advanced stability analysis are used to improve the efficiency and reduce the complexity of the flight control system. Controller designs are derived in both continuous time and discrete time covering discretization issues, which emerge from the implementation of the control algorithm using microprocessors.

• Presentation of the most powerful, practical and efficient methods for extracting the helicopter model parameters based on input/output responses, collected by the measurement instruments. This topic is of particular importance for real-life implementation of the control algorithms.

This book is suitable for students and researches interested in the development and the mathematical derivation of flight controllers for small-scale helicopters. Background knowledge in modern control is required.

More books from Springer Netherlands

Cover of the book Microwave-Induced Synthesis of Aromatic Heterocycles by Kimon P. Valavanis, Ioannis A. Raptis
Cover of the book Sensitivity to Change by Kimon P. Valavanis, Ioannis A. Raptis
Cover of the book Prelude to War by Kimon P. Valavanis, Ioannis A. Raptis
Cover of the book Environmental Change in Iceland: Past and Present by Kimon P. Valavanis, Ioannis A. Raptis
Cover of the book The Paradoxes of Action by Kimon P. Valavanis, Ioannis A. Raptis
Cover of the book Acculturation and Occupation: A Study of the 1956 Hungarian Refugees in the United States by Kimon P. Valavanis, Ioannis A. Raptis
Cover of the book On the Road for Work by Kimon P. Valavanis, Ioannis A. Raptis
Cover of the book Knowledge and Language by Kimon P. Valavanis, Ioannis A. Raptis
Cover of the book Prevention of Skin Cancer by Kimon P. Valavanis, Ioannis A. Raptis
Cover of the book Scientific Establishments and Hierarchies by Kimon P. Valavanis, Ioannis A. Raptis
Cover of the book Virtuous Thoughts: The Philosophy of Ernest Sosa by Kimon P. Valavanis, Ioannis A. Raptis
Cover of the book Urban Environment by Kimon P. Valavanis, Ioannis A. Raptis
Cover of the book Introduction to the Basic Concepts and Problems of Modern Logic by Kimon P. Valavanis, Ioannis A. Raptis
Cover of the book Mondrian's Philosophy of Visual Rhythm by Kimon P. Valavanis, Ioannis A. Raptis
Cover of the book Fatigue of Beta Processed and Beta Heat-treated Titanium Alloys by Kimon P. Valavanis, Ioannis A. Raptis
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy