Lipid Hydroperoxide-Derived Modification of Biomolecules

Nonfiction, Science & Nature, Science, Biological Sciences, Biochemistry, Health & Well Being, Medical, Specialties, Oncology
Cover of the book Lipid Hydroperoxide-Derived Modification of Biomolecules by , Springer Netherlands
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9789400779204
Publisher: Springer Netherlands Publication: December 28, 2013
Imprint: Springer Language: English
Author:
ISBN: 9789400779204
Publisher: Springer Netherlands
Publication: December 28, 2013
Imprint: Springer
Language: English

Lipid peroxidation is an important cellular process which can lead to detrimental effects if it is not regulated efficiently. Lipid hydroperoxide is formed in an initial step of lipid peroxidation. Lipid hydroperoxide is also known as a potential source of singlet oxygen. Harmful aldehydes are formed when the lipid hydroperoxide is degraded. The formed aldehyde has high reactivity against thiol or amine moieties. Therefore, it could act as a signaling molecule, which might induce the changing of gears inside a cell. Recent studies have shown that lipid hydroperoxide or a slightly modified product of the lipid hydroperoxide reacts with biomolecules such as proteins and aminophospholipids, which leads to formation of amide-type adducts. Amide-type adducts could be one of markers for oxidative stress and could also be an important player in some diseases. In this book, the chemistry and biochemistry of lipid hydroperoxide along with their conjugates with biomolecules are described.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Lipid peroxidation is an important cellular process which can lead to detrimental effects if it is not regulated efficiently. Lipid hydroperoxide is formed in an initial step of lipid peroxidation. Lipid hydroperoxide is also known as a potential source of singlet oxygen. Harmful aldehydes are formed when the lipid hydroperoxide is degraded. The formed aldehyde has high reactivity against thiol or amine moieties. Therefore, it could act as a signaling molecule, which might induce the changing of gears inside a cell. Recent studies have shown that lipid hydroperoxide or a slightly modified product of the lipid hydroperoxide reacts with biomolecules such as proteins and aminophospholipids, which leads to formation of amide-type adducts. Amide-type adducts could be one of markers for oxidative stress and could also be an important player in some diseases. In this book, the chemistry and biochemistry of lipid hydroperoxide along with their conjugates with biomolecules are described.

More books from Springer Netherlands

Cover of the book Karl Marx by
Cover of the book Energy Metabolism in Farm Animals by
Cover of the book Toward an Anthropology of Graphing by
Cover of the book Genetic Origins of Tumor Cells by
Cover of the book Family Well-Being by
Cover of the book Basic Problems in Methodology and Linguistics by
Cover of the book Calculation of Demographic Parameters in Tropical Livestock Herds by
Cover of the book Promoting Social Justice for Young Children by
Cover of the book The Study of Animal Behaviour by
Cover of the book Learning in Graphical Models by
Cover of the book Numerical Computation of Electric and Magnetic Fields by
Cover of the book Java in the 14th Century by
Cover of the book International Science and National Scientific Identity by
Cover of the book Best Practices in Marketing and their Impact on Quality of Life by
Cover of the book Inherited Disorders of Vitamins and Cofactors by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy