Longitudinal Structural Equation Modeling

A Comprehensive Introduction

Nonfiction, Reference & Language, Education & Teaching, Teaching, Statistics, Health & Well Being, Psychology, Social & Cultural Studies, Social Science
Cover of the book Longitudinal Structural Equation Modeling by Jason T. Newsom, Taylor and Francis
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Jason T. Newsom ISBN: 9781317975342
Publisher: Taylor and Francis Publication: June 19, 2015
Imprint: Routledge Language: English
Author: Jason T. Newsom
ISBN: 9781317975342
Publisher: Taylor and Francis
Publication: June 19, 2015
Imprint: Routledge
Language: English

This comprehensive resource reviews structural equation modeling (SEM) strategies for longitudinal data to help readers see which modeling options are available for which hypotheses. The author demonstrates how SEM is related to other longitudinal data techniques throughout. By exploring connections between models, readers gain a better understanding of when to choose one analysis over another. The book explores basic models to sophisticated ones including the statistical and conceptual underpinnings that are the building blocks of the analyses.  Accessibly written, research examples from the behavioral and social sciences and results interpretations are provided throughout. The emphasis is on concepts and practical guidance for applied research rather than on mathematical proofs. New terms are highlighted and defined in the glossary. Figures are included for every model along with detailed discussions of model specification and implementation issues.  Each chapter also includes examples of each model type, comment sections that provide practical guidance, model extensions, and recommended readings.

Highlights include:

  • Covers the major SEM approaches to longitudinal analysis in one resource.

  • Explores connections between longitudinal SEM models to enhance integration. 

  • Numerous examples that help readers match research questions to appropriate analyses and interpret results.

  • Reviews practical issues related to model specification and estimation to reinforce connections. 

  • Analyzes continuous and discrete (binary and ordinal) variables throughout for breadth not found in other sources.

  • Reviews key SEM concepts for those who need a refresher (Ch. 1). 

  • Emphasizes how to apply and interpret each model through realistic data examples.

  • Provides the book’s data sets at www.longitudinalsem.com along with the Mplus and R-lavaan syntax used to generate the results.

  • Introduces the LISREL notation system used throughout (Appendix A). 

The chapters can be read out of order but it is best to read chapters 1 – 4 first because most of the later chapters refer back to them. The book opens with a review of latent variables and analysis of binary and ordinal variables. Chapter 2 applies this information to assessing longitudinal measurement invariance.  SEM tests of dependent means and proportions over time points are explored in Chapter 3, and stability and change, difference scores, and lagged regression are covered in Chapter 4. The remaining chapters are each devoted to one major type of longitudinal SEM -- repeated measures analysis models, full cross-lagged panel models and simplex models, modeling stability with state-trait models, linear and nonlinear growth curve models, latent difference score models, latent transition analysis, time series analysis, survival analysis, and attrition. Missing data is discussed in the context of many of the preceding models in Chapter 13. 

Ideal for graduate courses on longitudinal (data) analysis, advanced SEM, longitudinal SEM, and/or advanced data (quantitative) analysis taught in the behavioral, social, and health sciences, this text also appeals to researchers in these fields. Intended for those without an extensive math background, prerequisites include familiarity with basic SEM. Matrix algebra is avoided in all but a few places.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This comprehensive resource reviews structural equation modeling (SEM) strategies for longitudinal data to help readers see which modeling options are available for which hypotheses. The author demonstrates how SEM is related to other longitudinal data techniques throughout. By exploring connections between models, readers gain a better understanding of when to choose one analysis over another. The book explores basic models to sophisticated ones including the statistical and conceptual underpinnings that are the building blocks of the analyses.  Accessibly written, research examples from the behavioral and social sciences and results interpretations are provided throughout. The emphasis is on concepts and practical guidance for applied research rather than on mathematical proofs. New terms are highlighted and defined in the glossary. Figures are included for every model along with detailed discussions of model specification and implementation issues.  Each chapter also includes examples of each model type, comment sections that provide practical guidance, model extensions, and recommended readings.

Highlights include:

The chapters can be read out of order but it is best to read chapters 1 – 4 first because most of the later chapters refer back to them. The book opens with a review of latent variables and analysis of binary and ordinal variables. Chapter 2 applies this information to assessing longitudinal measurement invariance.  SEM tests of dependent means and proportions over time points are explored in Chapter 3, and stability and change, difference scores, and lagged regression are covered in Chapter 4. The remaining chapters are each devoted to one major type of longitudinal SEM -- repeated measures analysis models, full cross-lagged panel models and simplex models, modeling stability with state-trait models, linear and nonlinear growth curve models, latent difference score models, latent transition analysis, time series analysis, survival analysis, and attrition. Missing data is discussed in the context of many of the preceding models in Chapter 13. 

Ideal for graduate courses on longitudinal (data) analysis, advanced SEM, longitudinal SEM, and/or advanced data (quantitative) analysis taught in the behavioral, social, and health sciences, this text also appeals to researchers in these fields. Intended for those without an extensive math background, prerequisites include familiarity with basic SEM. Matrix algebra is avoided in all but a few places.

More books from Taylor and Francis

Cover of the book Selected Papers on Psychoanalysis by Jason T. Newsom
Cover of the book Career Decision Making by Jason T. Newsom
Cover of the book Defining Public Administration by Jason T. Newsom
Cover of the book Radicalization by Jason T. Newsom
Cover of the book Community of Insecurity by Jason T. Newsom
Cover of the book Understanding Global Poverty by Jason T. Newsom
Cover of the book Present Day Political Organization of China by Jason T. Newsom
Cover of the book Ethnicity and Race in Association Football by Jason T. Newsom
Cover of the book Youth, Technology, Governance, Experience by Jason T. Newsom
Cover of the book Refugees and the Politics of the Everyday State in Pakistan by Jason T. Newsom
Cover of the book Philosophy and Literature by Jason T. Newsom
Cover of the book Refugee Protection and the Role of Law by Jason T. Newsom
Cover of the book The Soviet Middle East (Routledge Revivals) by Jason T. Newsom
Cover of the book Global Climate Change by Jason T. Newsom
Cover of the book European Perspectives in Marketing by Jason T. Newsom
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy