Matrix-Analytic Methods in Stochastic Models

Nonfiction, Science & Nature, Mathematics, Number Systems, Statistics
Cover of the book Matrix-Analytic Methods in Stochastic Models by , Springer New York
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9781461449096
Publisher: Springer New York Publication: December 4, 2012
Imprint: Springer Language: English
Author:
ISBN: 9781461449096
Publisher: Springer New York
Publication: December 4, 2012
Imprint: Springer
Language: English

Matrix-analytic and related methods have become recognized as an important and fundamental approach for the mathematical analysis of general classes of complex stochastic models. Research in the area of matrix-analytic and related methods seeks to discover underlying probabilistic structures intrinsic in such stochastic models, develop numerical algorithms for computing functionals (e.g., performance measures) of the underlying stochastic processes, and apply these probabilistic structures and/or computational algorithms within a wide variety of fields. This volume presents recent research results on: the theory, algorithms and methodologies concerning matrix-analytic and related methods in stochastic models; and the application of matrix-analytic and related methods in various fields, which includes but is not limited to computer science and engineering, communication networks and telephony, electrical and industrial engineering, operations research, management science, financial and risk analysis, and bio-statistics. These research studies provide deep insights and understanding of the stochastic models of interest from a mathematics and/or applications perspective, as well as identify directions for future research.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Matrix-analytic and related methods have become recognized as an important and fundamental approach for the mathematical analysis of general classes of complex stochastic models. Research in the area of matrix-analytic and related methods seeks to discover underlying probabilistic structures intrinsic in such stochastic models, develop numerical algorithms for computing functionals (e.g., performance measures) of the underlying stochastic processes, and apply these probabilistic structures and/or computational algorithms within a wide variety of fields. This volume presents recent research results on: the theory, algorithms and methodologies concerning matrix-analytic and related methods in stochastic models; and the application of matrix-analytic and related methods in various fields, which includes but is not limited to computer science and engineering, communication networks and telephony, electrical and industrial engineering, operations research, management science, financial and risk analysis, and bio-statistics. These research studies provide deep insights and understanding of the stochastic models of interest from a mathematics and/or applications perspective, as well as identify directions for future research.

More books from Springer New York

Cover of the book Lasers in Aesthetic Surgery by
Cover of the book Industrial Crops by
Cover of the book Security and Privacy for Implantable Medical Devices by
Cover of the book Otoplasty by
Cover of the book Ribonuclease P by
Cover of the book A Child's Right to a Healthy Environment by
Cover of the book High Performance Multi-Channel High-Speed I/O Circuits by
Cover of the book From Human Attention to Computational Attention by
Cover of the book China’s Strategy in Space by
Cover of the book Resistance to Immunotherapeutic Antibodies in Cancer by
Cover of the book Business Analytics by
Cover of the book Disruptive Behavior Disorders by
Cover of the book Corneal Biomechanics and Refractive Surgery by
Cover of the book Oversampling A/D Converters with Improved Signal Transfer Functions by
Cover of the book Introduction to Vortex Filaments in Equilibrium by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy