Maximum Likelihood Estimation

Logic and Practice

Nonfiction, Reference & Language, Reference, Research, Social & Cultural Studies, Social Science
Cover of the book Maximum Likelihood Estimation by Scott R. Eliason, SAGE Publications
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Scott R. Eliason ISBN: 9781506315904
Publisher: SAGE Publications Publication: August 9, 1993
Imprint: SAGE Publications, Inc Language: English
Author: Scott R. Eliason
ISBN: 9781506315904
Publisher: SAGE Publications
Publication: August 9, 1993
Imprint: SAGE Publications, Inc
Language: English

In this volume the underlying logic and practice of maximum likelihood (ML) estimation is made clear by providing a general modeling framework that utilizes the tools of ML methods. This framework offers readers a flexible modeling strategy since it accommodates cases from the simplest linear models to the most complex nonlinear models that link a system of endogenous and exogenous variables with non-normal distributions. Using examples to illustrate the techniques of finding ML estimators and estimates, Eliason discusses: what properties are desirable in an estimator; basic techniques for finding ML solutions; the general form of the covariance matrix for ML estimates; the sampling distribution of ML estimators; the application of ML in the normal distribution as well as in other useful distributions; and some helpful illustrations of likelihoods.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

In this volume the underlying logic and practice of maximum likelihood (ML) estimation is made clear by providing a general modeling framework that utilizes the tools of ML methods. This framework offers readers a flexible modeling strategy since it accommodates cases from the simplest linear models to the most complex nonlinear models that link a system of endogenous and exogenous variables with non-normal distributions. Using examples to illustrate the techniques of finding ML estimators and estimates, Eliason discusses: what properties are desirable in an estimator; basic techniques for finding ML solutions; the general form of the covariance matrix for ML estimates; the sampling distribution of ML estimators; the application of ML in the normal distribution as well as in other useful distributions; and some helpful illustrations of likelihoods.

More books from SAGE Publications

Cover of the book Geographies of Postcolonialism by Scott R. Eliason
Cover of the book Learning and Teaching in Higher Education by Scott R. Eliason
Cover of the book Ashis Nandy and the Cultural Politics of Selfhood by Scott R. Eliason
Cover of the book Juvenile Justice and Delinquency by Scott R. Eliason
Cover of the book Skills in Rational Emotive Behaviour Counselling & Psychotherapy by Scott R. Eliason
Cover of the book Discovering Leadership by Scott R. Eliason
Cover of the book Effective Supervision in Social Work by Scott R. Eliason
Cover of the book A Very Short, Fairly Interesting and Reasonably Cheap Book About Studying Criminology by Scott R. Eliason
Cover of the book Pocket Glossary for Commonly Used Research Terms by Scott R. Eliason
Cover of the book Teaching by Design in Elementary Mathematics, Grades K–1 by Scott R. Eliason
Cover of the book Learning From the Best by Scott R. Eliason
Cover of the book Introduction to Media and Politics by Scott R. Eliason
Cover of the book Qualitative Research & Evaluation Methods by Scott R. Eliason
Cover of the book The New Elementary Teacher's Handbook by Scott R. Eliason
Cover of the book The SAGE Encyclopedia of Pharmacology and Society by Scott R. Eliason
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy