Author: | Steven J. Simske | ISBN: | 9781118626696 |
Publisher: | Wiley | Publication: | May 30, 2013 |
Imprint: | Wiley-IEEE Press | Language: | English |
Author: | Steven J. Simske |
ISBN: | 9781118626696 |
Publisher: | Wiley |
Publication: | May 30, 2013 |
Imprint: | Wiley-IEEE Press |
Language: | English |
The confluence of cloud computing, parallelism and advanced machine intelligence approaches has created a world in which the optimum knowledge system will usually be architected from the combination of two or more knowledge-generating systems. There is a need, then, to provide a reusable, broadly-applicable set of design patterns to empower the intelligent system architect to take advantage of this opportunity.
This book explains how to design and build intelligent systems that are optimized for changing system requirements (adaptability), optimized for changing system input (robustness), and optimized for one or more other important system parameters (e.g., accuracy, efficiency, cost). It provides an overview of traditional parallel processing which is shown to consist primarily of task and component parallelism; before introducing meta-algorithmic parallelism which is based on combining two or more algorithms, classification engines or other systems.
Key features:
The confluence of cloud computing, parallelism and advanced machine intelligence approaches has created a world in which the optimum knowledge system will usually be architected from the combination of two or more knowledge-generating systems. There is a need, then, to provide a reusable, broadly-applicable set of design patterns to empower the intelligent system architect to take advantage of this opportunity.
This book explains how to design and build intelligent systems that are optimized for changing system requirements (adaptability), optimized for changing system input (robustness), and optimized for one or more other important system parameters (e.g., accuracy, efficiency, cost). It provides an overview of traditional parallel processing which is shown to consist primarily of task and component parallelism; before introducing meta-algorithmic parallelism which is based on combining two or more algorithms, classification engines or other systems.
Key features: