Author: | Tomas B. Co | ISBN: | 9781107241091 |
Publisher: | Cambridge University Press | Publication: | June 28, 2013 |
Imprint: | Cambridge University Press | Language: | English |
Author: | Tomas B. Co |
ISBN: | 9781107241091 |
Publisher: | Cambridge University Press |
Publication: | June 28, 2013 |
Imprint: | Cambridge University Press |
Language: | English |
Based on course notes from over twenty years of teaching engineering and physical sciences at Michigan Technological University, Tomas Co's engineering mathematics textbook is rich with examples, applications and exercises. Professor Co uses analytical approaches to solve smaller problems to provide mathematical insight and understanding, and numerical methods for large and complex problems. The book emphasises applying matrices with strong attention to matrix structure and computational issues such as sparsity and efficiency. Chapters on vector calculus and integral theorems are used to build coordinate-free physical models with special emphasis on orthogonal co-ordinates. Chapters on ODEs and PDEs cover both analytical and numerical approaches. Topics on analytical solutions include similarity transform methods, direct formulas for series solutions, bifurcation analysis, Lagrange–Charpit formulas, shocks/rarefaction and others. Topics on numerical methods include stability analysis, DAEs, high-order finite-difference formulas, Delaunay meshes, and others. MATLAB® implementations of the methods and concepts are fully integrated.
Based on course notes from over twenty years of teaching engineering and physical sciences at Michigan Technological University, Tomas Co's engineering mathematics textbook is rich with examples, applications and exercises. Professor Co uses analytical approaches to solve smaller problems to provide mathematical insight and understanding, and numerical methods for large and complex problems. The book emphasises applying matrices with strong attention to matrix structure and computational issues such as sparsity and efficiency. Chapters on vector calculus and integral theorems are used to build coordinate-free physical models with special emphasis on orthogonal co-ordinates. Chapters on ODEs and PDEs cover both analytical and numerical approaches. Topics on analytical solutions include similarity transform methods, direct formulas for series solutions, bifurcation analysis, Lagrange–Charpit formulas, shocks/rarefaction and others. Topics on numerical methods include stability analysis, DAEs, high-order finite-difference formulas, Delaunay meshes, and others. MATLAB® implementations of the methods and concepts are fully integrated.