Micro and Nanophotonics for Semiconductor Infrared Detectors

Towards an Ultimate Uncooled Device

Nonfiction, Science & Nature, Technology, Microwaves, Material Science
Cover of the book Micro and Nanophotonics for Semiconductor Infrared Detectors by Zoran Jakšić, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Zoran Jakšić ISBN: 9783319096742
Publisher: Springer International Publishing Publication: September 25, 2014
Imprint: Springer Language: English
Author: Zoran Jakšić
ISBN: 9783319096742
Publisher: Springer International Publishing
Publication: September 25, 2014
Imprint: Springer
Language: English

The advent of microelectromechanic system (MEMS) technologies and nanotechnologies has resulted in a multitude of structures and devices with ultra compact dimensions and with vastly enhanced or even completely novel properties. In the field of photonics it resulted in the appearance of new paradigms, including photonic crystals that exhibit photonic bandgap and represent an optical analog of semiconductors and metamaterials that have subwavelength features and may have almost arbitrary values of effective refractive index, including those below zero. In addition to that, a whole new field of plasmonics appeared, dedicated to the manipulation with evanescent, surface-bound electromagnetic waves and offering an opportunity to merge nanoelectronics with all-optical circuitry. In the field of infrared technologies MEMS and nanotechnologies ensured the appearance of a new generation of silicon-based thermal detectors with properties vastly surpassing the conventional thermal devices. However, another family of infrared detectors, photonic devices based on narrow-bandgap semiconductors, has traditionally been superior to thermal detectors. Literature about their micro and nanophotonic enhancement has been scarce and scattered through journals. This book offers the first systematic approach to numerous different MEMS and nanotechnology-based methods available for the improvement of photonic infrared detectors and points out to a path towards uncooled operation with the performance of cryogenically cooled devices. It is shown that a vast area for enhancement does exists and that photonic devices can readily keep their leading position in infrared detection. The various methods and approaches described in the book are also directly applicable to different other types of photodetectors like solar cells, often with little or no modification.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The advent of microelectromechanic system (MEMS) technologies and nanotechnologies has resulted in a multitude of structures and devices with ultra compact dimensions and with vastly enhanced or even completely novel properties. In the field of photonics it resulted in the appearance of new paradigms, including photonic crystals that exhibit photonic bandgap and represent an optical analog of semiconductors and metamaterials that have subwavelength features and may have almost arbitrary values of effective refractive index, including those below zero. In addition to that, a whole new field of plasmonics appeared, dedicated to the manipulation with evanescent, surface-bound electromagnetic waves and offering an opportunity to merge nanoelectronics with all-optical circuitry. In the field of infrared technologies MEMS and nanotechnologies ensured the appearance of a new generation of silicon-based thermal detectors with properties vastly surpassing the conventional thermal devices. However, another family of infrared detectors, photonic devices based on narrow-bandgap semiconductors, has traditionally been superior to thermal detectors. Literature about their micro and nanophotonic enhancement has been scarce and scattered through journals. This book offers the first systematic approach to numerous different MEMS and nanotechnology-based methods available for the improvement of photonic infrared detectors and points out to a path towards uncooled operation with the performance of cryogenically cooled devices. It is shown that a vast area for enhancement does exists and that photonic devices can readily keep their leading position in infrared detection. The various methods and approaches described in the book are also directly applicable to different other types of photodetectors like solar cells, often with little or no modification.

More books from Springer International Publishing

Cover of the book Emerging Technologies for Developing Countries by Zoran Jakšić
Cover of the book Regularity and Irregularity of Superprocesses with (1 + β)-stable Branching Mechanism by Zoran Jakšić
Cover of the book Acoustic, Electromagnetic, Neutron Emissions from Fracture and Earthquakes by Zoran Jakšić
Cover of the book Bridge Collapse Frequencies versus Failure Probabilities by Zoran Jakšić
Cover of the book The Transformation of Georgia from 2004 to 2012 by Zoran Jakšić
Cover of the book Manual of Pediatric Anesthesia by Zoran Jakšić
Cover of the book Modeling Decisions for Artificial Intelligence by Zoran Jakšić
Cover of the book Arctic Summer College Yearbook by Zoran Jakšić
Cover of the book Analytical Finance: Volume I by Zoran Jakšić
Cover of the book Statistical Distributions by Zoran Jakšić
Cover of the book Structural Equation Models by Zoran Jakšić
Cover of the book Serious Games and Edutainment Applications by Zoran Jakšić
Cover of the book Intelligent Computer Mathematics by Zoran Jakšić
Cover of the book Statistics of Financial Markets by Zoran Jakšić
Cover of the book The Fed at One Hundred by Zoran Jakšić
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy