Microphysics of Atmospheric Phenomena

Nonfiction, Science & Nature, Science, Earth Sciences, Geophysics, Other Sciences, Meteorology
Cover of the book Microphysics of Atmospheric Phenomena by Boris M. Smirnov, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Boris M. Smirnov ISBN: 9783319308135
Publisher: Springer International Publishing Publication: August 29, 2016
Imprint: Springer Language: English
Author: Boris M. Smirnov
ISBN: 9783319308135
Publisher: Springer International Publishing
Publication: August 29, 2016
Imprint: Springer
Language: English

This book investigates elementary processes in the Earth’s atmosphere involving photons, electrons, ions, radicals, and aerosols. It is based on global atmospheric models such as the standard atmospheric model with averaged atmospheric parameters across the globe and over time, the Earth’s energetic balance, and the global electric circuit that allows to analyze fundamental atmospheric properties to be analyzed. Rate constants of elementary processes in the Earth’s atmosphere, together with measured atmospheric parameters and existing concepts of atmospheric phenomena, are used in the analysis of global and local atmospheric processes. Atmospheric photoprocesses result from the interaction of solar radiation with the atmosphere and processes involving ions, oxygen atoms, excited atomic particles and ozone molecules. Atmospheric electricity as a secondary phenomenon to atmospheric water circulation results in a chain of processes that begins with collisions of water aerosols in different aggregate states. Cosmic rays are of importance for atmospheric electricity, as they create positive and negative ions in the air. Air breakdown in an electric field of clouds in the form of lightning may develop under the influence of cosmic ray-created seed electrons, which are necessary for electron multiplication in ionization wave-streamers. The upper atmosphere (ionosphere) is formed under solar radiation in a vacuum ultraviolet spectrum, and absorption of this radiation leads to air photoionization. The greenhouse effect is determined by atmospheric water, whereas transitions between a water vapor and aerosols may lead to a change in atmospheric optical depth. Carbon dioxide contributes in small portions to the atmospheric greenhouse effect. Cosmic rays are of importance for atmospheric discharge, the origin of lightning and cloud formation in the first stage of aerosol growth. This book provides a qualitative description of atmospheric properties and phenomena based on elementary processes and simple models.  

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book investigates elementary processes in the Earth’s atmosphere involving photons, electrons, ions, radicals, and aerosols. It is based on global atmospheric models such as the standard atmospheric model with averaged atmospheric parameters across the globe and over time, the Earth’s energetic balance, and the global electric circuit that allows to analyze fundamental atmospheric properties to be analyzed. Rate constants of elementary processes in the Earth’s atmosphere, together with measured atmospheric parameters and existing concepts of atmospheric phenomena, are used in the analysis of global and local atmospheric processes. Atmospheric photoprocesses result from the interaction of solar radiation with the atmosphere and processes involving ions, oxygen atoms, excited atomic particles and ozone molecules. Atmospheric electricity as a secondary phenomenon to atmospheric water circulation results in a chain of processes that begins with collisions of water aerosols in different aggregate states. Cosmic rays are of importance for atmospheric electricity, as they create positive and negative ions in the air. Air breakdown in an electric field of clouds in the form of lightning may develop under the influence of cosmic ray-created seed electrons, which are necessary for electron multiplication in ionization wave-streamers. The upper atmosphere (ionosphere) is formed under solar radiation in a vacuum ultraviolet spectrum, and absorption of this radiation leads to air photoionization. The greenhouse effect is determined by atmospheric water, whereas transitions between a water vapor and aerosols may lead to a change in atmospheric optical depth. Carbon dioxide contributes in small portions to the atmospheric greenhouse effect. Cosmic rays are of importance for atmospheric discharge, the origin of lightning and cloud formation in the first stage of aerosol growth. This book provides a qualitative description of atmospheric properties and phenomena based on elementary processes and simple models.  

More books from Springer International Publishing

Cover of the book Formality Theory by Boris M. Smirnov
Cover of the book An Introduction to Mine Hydrogeology by Boris M. Smirnov
Cover of the book Structured Object-Oriented Formal Language and Method by Boris M. Smirnov
Cover of the book Design, User Experience, and Usability. Practice and Case Studies by Boris M. Smirnov
Cover of the book Device Physics, Modeling, Technology, and Analysis for Silicon MESFET by Boris M. Smirnov
Cover of the book Computer Safety, Reliability, and Security by Boris M. Smirnov
Cover of the book Neural Engineering by Boris M. Smirnov
Cover of the book The Quest for Shakespeare by Boris M. Smirnov
Cover of the book Proteases in Apoptosis: Pathways, Protocols and Translational Advances by Boris M. Smirnov
Cover of the book Philosophy in Stan Brakhage's Dog Star Man by Boris M. Smirnov
Cover of the book Pancreatic Neuroendocrine Neoplasms by Boris M. Smirnov
Cover of the book Migration, Refugees and Human Security in the Mediterranean and MENA by Boris M. Smirnov
Cover of the book Stages of Corporate Social Responsibility by Boris M. Smirnov
Cover of the book Progress in Cryptology - AFRICACRYPT 2017 by Boris M. Smirnov
Cover of the book The Palgrave Handbook of Knowledge Management by Boris M. Smirnov
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy