Model-Based Processing for Underwater Acoustic Arrays

Nonfiction, Science & Nature, Science, Physics, Mechanics, Technology, Electronics
Cover of the book Model-Based Processing for Underwater Acoustic Arrays by Edmund J. Sullivan, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Edmund J. Sullivan ISBN: 9783319175577
Publisher: Springer International Publishing Publication: May 14, 2015
Imprint: Springer Language: English
Author: Edmund J. Sullivan
ISBN: 9783319175577
Publisher: Springer International Publishing
Publication: May 14, 2015
Imprint: Springer
Language: English

This monograph presents a unified approach to model-based processing for underwater acoustic arrays. The use of physical models in passive array processing is not a new idea, but it has been used on a case-by-case basis, and as such, lacks any unifying structure. This work views all such processing methods as estimation procedures, which then can be unified by treating them all as a form of joint estimation based on a Kalman-type recursive processor, which can be recursive either in space or time, depending on the application. This is done for three reasons. First, the Kalman filter provides a natural framework for the inclusion of physical models in a processing scheme. Second, it allows poorly known model parameters to be jointly estimated along with the quantities of interest. This is important, since in certain areas of array processing already in use, such as those based on matched-field processing, the so-called mismatch problem either degrades performance or, indeed, prevents any solution at all. Thirdly, such a unification provides a formal means of quantifying the performance improvement. The term model-based will be strictly defined as the use of physics-based models as a means of introducing a priori information. This leads naturally to viewing the method as a Bayesian processor. Short expositions of estimation theory and acoustic array theory are presented, followed by a presentation of the Kalman filter in its recursive estimator form. Examples of applications to localization, bearing estimation, range estimation and model parameter estimation are provided along with experimental results verifying the method. The book is sufficiently self-contained to serve as a guide for the application of model-based array processing for the practicing engineer.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This monograph presents a unified approach to model-based processing for underwater acoustic arrays. The use of physical models in passive array processing is not a new idea, but it has been used on a case-by-case basis, and as such, lacks any unifying structure. This work views all such processing methods as estimation procedures, which then can be unified by treating them all as a form of joint estimation based on a Kalman-type recursive processor, which can be recursive either in space or time, depending on the application. This is done for three reasons. First, the Kalman filter provides a natural framework for the inclusion of physical models in a processing scheme. Second, it allows poorly known model parameters to be jointly estimated along with the quantities of interest. This is important, since in certain areas of array processing already in use, such as those based on matched-field processing, the so-called mismatch problem either degrades performance or, indeed, prevents any solution at all. Thirdly, such a unification provides a formal means of quantifying the performance improvement. The term model-based will be strictly defined as the use of physics-based models as a means of introducing a priori information. This leads naturally to viewing the method as a Bayesian processor. Short expositions of estimation theory and acoustic array theory are presented, followed by a presentation of the Kalman filter in its recursive estimator form. Examples of applications to localization, bearing estimation, range estimation and model parameter estimation are provided along with experimental results verifying the method. The book is sufficiently self-contained to serve as a guide for the application of model-based array processing for the practicing engineer.

More books from Springer International Publishing

Cover of the book Text, Speech, and Dialogue by Edmund J. Sullivan
Cover of the book Quality Software Through Reuse and Integration by Edmund J. Sullivan
Cover of the book Human-Computer Interaction. Recognition and Interaction Technologies by Edmund J. Sullivan
Cover of the book Inverse Problems and Applications by Edmund J. Sullivan
Cover of the book The Evolution of Agricultural Credit during China’s Republican Era, 1912–1949 by Edmund J. Sullivan
Cover of the book Mechanics of Composite and Multi-functional Materials, Volume 7 by Edmund J. Sullivan
Cover of the book Clinical Echocardiography and Other Imaging Techniques in Cardiomyopathies by Edmund J. Sullivan
Cover of the book Moral Ecologies by Edmund J. Sullivan
Cover of the book Commercializing Cosmopolitan Security by Edmund J. Sullivan
Cover of the book Partial Stabilization and Control of Distributed Parameter Systems with Elastic Elements by Edmund J. Sullivan
Cover of the book The Art of Forgetting by Edmund J. Sullivan
Cover of the book Polymyalgia Rheumatica and Giant Cell Arteritis by Edmund J. Sullivan
Cover of the book Brain Crosstalk in Puberty and Adolescence by Edmund J. Sullivan
Cover of the book Mission Mastery by Edmund J. Sullivan
Cover of the book Pattern Mining with Evolutionary Algorithms by Edmund J. Sullivan
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy