Modeling Dose-Response Microarray Data in Early Drug Development Experiments Using R

Order-Restricted Analysis of Microarray Data

Nonfiction, Science & Nature, Mathematics, Statistics, Computers, Application Software
Cover of the book Modeling Dose-Response Microarray Data in Early Drug Development Experiments Using R by , Springer Berlin Heidelberg
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783642240072
Publisher: Springer Berlin Heidelberg Publication: August 27, 2012
Imprint: Springer Language: English
Author:
ISBN: 9783642240072
Publisher: Springer Berlin Heidelberg
Publication: August 27, 2012
Imprint: Springer
Language: English

This book focuses on the analysis of dose-response microarray data in pharmaceutical settings, the goal being to cover this important topic for early drug development experiments and to provide user-friendly R packages that can be used to analyze this data. It is intended for biostatisticians and bioinformaticians in the pharmaceutical industry, biologists, and biostatistics/bioinformatics graduate students.

Part I of the book is an introduction, in which we discuss the dose-response setting and the problem of estimating normal means under order restrictions. In particular, we discuss the pooled-adjacent-violator (PAV) algorithm and isotonic regression, as well as inference under order restrictions and non-linear parametric models, which are used in the second part of the book.

Part II is the core of the book, in which we focus on the analysis of dose-response microarray data. Methodological topics discussed include:

•             Multiplicity adjustment

•             Test statistics and procedures for the analysis of dose-response microarray data

•             Resampling-based inference and use of the SAM method for small-variance genes in the data

•             Identification and classification of dose-response curve shapes

•             Clustering of order-restricted (but not necessarily monotone) dose-response profiles

•             Gene set analysis to facilitate the interpretation of microarray results

•             Hierarchical Bayesian models and Bayesian variable selection

•             Non-linear models for dose-response microarray data

•             Multiple contrast tests

•             Multiple confidence intervals for selected parameters adjusted for the false coverage-statement rate

All methodological issues in the book are illustrated using real-world examples of dose-response microarray datasets from early drug development experiments.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book focuses on the analysis of dose-response microarray data in pharmaceutical settings, the goal being to cover this important topic for early drug development experiments and to provide user-friendly R packages that can be used to analyze this data. It is intended for biostatisticians and bioinformaticians in the pharmaceutical industry, biologists, and biostatistics/bioinformatics graduate students.

Part I of the book is an introduction, in which we discuss the dose-response setting and the problem of estimating normal means under order restrictions. In particular, we discuss the pooled-adjacent-violator (PAV) algorithm and isotonic regression, as well as inference under order restrictions and non-linear parametric models, which are used in the second part of the book.

Part II is the core of the book, in which we focus on the analysis of dose-response microarray data. Methodological topics discussed include:

•             Multiplicity adjustment

•             Test statistics and procedures for the analysis of dose-response microarray data

•             Resampling-based inference and use of the SAM method for small-variance genes in the data

•             Identification and classification of dose-response curve shapes

•             Clustering of order-restricted (but not necessarily monotone) dose-response profiles

•             Gene set analysis to facilitate the interpretation of microarray results

•             Hierarchical Bayesian models and Bayesian variable selection

•             Non-linear models for dose-response microarray data

•             Multiple contrast tests

•             Multiple confidence intervals for selected parameters adjusted for the false coverage-statement rate

All methodological issues in the book are illustrated using real-world examples of dose-response microarray datasets from early drug development experiments.

More books from Springer Berlin Heidelberg

Cover of the book Media and Convergence Management by
Cover of the book States of Consciousness by
Cover of the book Imaging of the Brain in Psychiatry and Related Fields by
Cover of the book Legal Strategies by
Cover of the book Dermatopathology by
Cover of the book Star Clusters in the Era of Large Surveys by
Cover of the book Aspect-Oriented Database Systems by
Cover of the book Handbook of Manufacturing Control by
Cover of the book Asset Management für Infrastrukturanlagen - Energie und Wasser by
Cover of the book Lipoprotein Subfractions Omega-3 Fatty Acids by
Cover of the book Digitale Produktion by
Cover of the book Multiplication Operators on the Bergman Space by
Cover of the book Rock and Pop Venues by
Cover of the book Paar- und Familienberatung by
Cover of the book Genetic Research in Psychiatry by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy