Modelling of Damage Processes in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites

Nonfiction, Science & Nature, Technology, Material Science
Cover of the book Modelling of Damage Processes in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites by , Elsevier Science
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9780081022979
Publisher: Elsevier Science Publication: November 23, 2018
Imprint: Woodhead Publishing Language: English
Author:
ISBN: 9780081022979
Publisher: Elsevier Science
Publication: November 23, 2018
Imprint: Woodhead Publishing
Language: English

Modelling of Damage Processes in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites focuses on the advanced characterization techniques used for the analysis of composite materials developed from natural fiber/biomass, synthetic fibers and a combination of these materials used as fillers and reinforcements to enhance materials performance and utilization in automotive, aerospace, construction and building components. It will act as a detailed reference resource to encourage future research in natural fiber and hybrid composite materials, an area much in demand due to the need for more sustainable, recyclable, and eco-friendly composites in a broad range of applications.

Written by leading experts in the field, and covering composite materials developed from different natural fibers and their hybridization with synthetic fibers, the book's chapters provide cutting-edge, up-to-date research on the characterization, analysis and modelling of composite materials.

  • Contains contributions from leading experts in the field
  • Discusses recent progress on failure analysis, SHM, durability, life prediction and the modelling of damage in natural fiber-based composite materials
  • Covers experimental, analytical and numerical analysis
  • Provides detailed and comprehensive information on mechanical properties, testing methods and modelling techniques
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Modelling of Damage Processes in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites focuses on the advanced characterization techniques used for the analysis of composite materials developed from natural fiber/biomass, synthetic fibers and a combination of these materials used as fillers and reinforcements to enhance materials performance and utilization in automotive, aerospace, construction and building components. It will act as a detailed reference resource to encourage future research in natural fiber and hybrid composite materials, an area much in demand due to the need for more sustainable, recyclable, and eco-friendly composites in a broad range of applications.

Written by leading experts in the field, and covering composite materials developed from different natural fibers and their hybridization with synthetic fibers, the book's chapters provide cutting-edge, up-to-date research on the characterization, analysis and modelling of composite materials.

More books from Elsevier Science

Cover of the book Library Instruction Design by
Cover of the book A Quick Guide to Welding and Weld Inspection by
Cover of the book Neuromuscular Disorders of Infancy, Childhood, and Adolescence by
Cover of the book The Langevin and Generalised Langevin Approach to the Dynamics of Atomic, Polymeric and Colloidal Systems by
Cover of the book Biomolecular Modelling and Simulations by
Cover of the book Handbook of Models for Human Aging by
Cover of the book Improving Traceability in Food Processing and Distribution by
Cover of the book Novel Carbon Adsorbents by
Cover of the book Neuroendocrine Perspectives by
Cover of the book High Acid Crudes by
Cover of the book Kiwifruit by
Cover of the book RNA Editing by
Cover of the book Securing the Smart Grid by
Cover of the book Programming 16-Bit PIC Microcontrollers in C by
Cover of the book Pervasive Information Architecture by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy